

Just Spring Integration

Madhusudhan Konda

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Just Spring Integration
by Madhusudhan Konda

Copyright © 2012 Madhusudhan Konda. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Rachel Steely
Copyeditor: Chet Chin
Proofreader: Rachel Steely

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Rebecca Demarest

Revision History for the First Edition:
2012-03-30 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449316082 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Just Spring Integration, the image of a long-eared jerboa, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31608-2

[LSI]

1333127337

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449316082

Table of Contents

Foreword . vii

Preface . ix

1. Integration Fundamentals . 1
Introduction 1
Integration Strategies 1

Messaging Patterns 2
Traditional Programming Model 3

Standalone Messaging Model 5
Summary 7

2. Basics . 9
Introduction 9
Messages 9

Dissecting a Message 9
Generic Implementation 10

Message Channels 11
Declaring Channels 12

Endpoints 12
Service Activator Endpoint Example 12
Example 13

Summary 15

3. Message Channels . 17
Introduction 17
Message Channels 17

Receiving Messages 18
Queue Channel 21
Priority Channel 22
Rendezvous Channel 23

iii

PublishSubscribe Channel 24
Direct Channel 25
Executor Channel 26
Null Channel 26

Summary 27

4. Endpoints . 29
Introduction 29
Common Endpoints 29

Service Activator 30
Message Bridge 31
Message Enricher 32
Gateway 34
Delayer 37

Spring Expressions 37
Scripting Support 38
For the Curious: Endpoint API 38

Consumers 39
Summary 42

5. Transformers . 43
Introduction 43
Built-In Transformers 43

String Transformers 43
Map Transformers 44
Serializing and Deserializing Transformers 44
JSON Transformers 45
XML Transformers 46
XPath Transformers 47

Custom Transformers 48
Trade Map Transformer 48
String Transformer 49

Using Annotations 50
Summary 51

6. Flow Components . 53
Introduction 53
Filters 53

Using Custom Filters 54
Using Framework’s MessageSelector 55
Using Annotations 55
Discarded Messages 56

Routers 57

iv | Table of Contents

PayloadTypeRouter 57
HeaderValueRouter 58
Custom Routers 58
Recipient List Router 59
Unqualified Messages 59
Routers Using Annotations 59

Splitters 60
Using Custom Splitters 60
Using AbstractMessageSplitter 62
Using Annotations 62
Splitter in the Background 63

Aggregators 64
Strategies 64
Correlation Strategy 65
Release Strategy 66
Message Store 67

Resequencers 67
Summary 68

7. Adapters . 69
Introduction 69
File Adapters 69

Using Namespace 70
Standalone File Readers 72
Outbound Adapters 73
Standalone File Adapters 74

FTP Adapters 74
Session Factory 74
Inbound FTP Adapters 75
Outbound FTP Adapters 76

JMS Adapters 76
Inbound Adapters: Receiving Messages 77
Publishing Messages: Outbound Adapters 79

JDBC Adapters 79
Inbound JDBC Adapters 79
Outbound JDBC Adapters 80

Summary 81

Table of Contents | v

Foreword

It’s a tough challenge to find the right depth and the right level of abstraction when
introducing a new technology. A book can go too deep, and risk miring the reader in
technological minutiae. This is hardly helpful, and—more often than not—it’s boring.
A book can also stay at a very abstract level, and revel in theory, but even this is boring
and useless for someone who hopes to achieve anything useful. Instead, the best books
treat a new technology as a dark room. They hold your hand and introduce the concepts
as you’re likely to encounter them, while saving you from missteps that you might
otherwise make. This is one such book: it introduces the concepts of Spring Integra-
tion’s API, along with their designs, but lets you move onto the next subject and keep
the entire mental map of the room in your head.

If you’re new to integration, and new to Spring Integration in particular, then let
Madhusudhan Konda hold your hand and lead you to the light ahead, in this easy-to-
read guide, Just Spring Integration. When you’re done, you’ll be up and running, and
if you still need more details, then you can always consult the Spring Integration project
page for in-depth features and access to the forums.

—Josh Long

vii

http://www.springsource.org/spring-integration
http://www.springsource.org/spring-integration

Preface

Messaging is a complex creature.

When I first started working on Enterprise projects in early 2000, I was initially lost in
the jungles of Enterprise messaging. It was (and is still, to some extent) a formidable
challenge to start an Enterprise messaging project. There used to be a variety of mes-
saging product offerings in the market, each one capable of performing several func-
tions. The JMS and JCA specs were handy, although a bit dry and hard to grasp without
a substantial amount of time spent on understanding them.

Projects do exist in an environment where it is necessary to interact and integrate with
other systems or modules. Integrating with other systems is a challenge to any Enter-
prise developer. I have worked with many developers who really wish to have a good
grasp of messaging frameworks but have been discouraged by the complexities and
technological offerings. I always wondered if there were an integration framework that
could take away the hassle of working with disparate systems.

Then came the Spring Integration framework. The Spring team has gone the extra mile
to simplify the complexities around messaging by creating the Integration framework,
complete with all sorts of bells and whistles. Spring Integration Framework is a perfect
fit for any Enterprise or standalone messaging application.

This book is an attempt to demystify the framework. It should give you enough knowl-
edge and confidence to start working on real world projects.

My aim is to deliver a simple, straightforward, no-nonsense, and example-driven book
on Spring Integration Framework. Of course, I’d like it to be a page turner and easy to
read, as well. I hope that I have achieved that through this book.

Please do get in touch should you have any feedback on this book. I hope you will enjoy
Just Spring Integration as much as I enjoyed writing it.

ix

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Just Spring Integration by Madhusudhan
Konda (O’Reilly). Copyright 2012 Madhusudhan Konda, 978-1-449-31608-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

x | Preface

mailto:permissions@oreilly.com

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business. Technology profes-
sionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for re-
search, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/just-spring-integration

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xi

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/just-spring-integration
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

To contact the author, please visit Madhusudhan Konda’s website at:

http://www.madhusudhan.com

Follow the author on Twitter: http://twitter.com/mkonda007

Acknowledgments
I sincerely wish to thank my editors, Mike Loukides and Meghan Blanchette, for having
faith in me and directing me when lost. Also to all of those at O’Reilly, especially Rachel
Steely and Ed Stephenson, as well as Dan Fauxsmith, Maria Stallone, Rob Romano,
and Karen Montgomery, for helping shape this book.

I also sincerely express my deepest gratitude to Josh Long, Greg Turnquist, and Sandro
Mancuso for their helpful insights, reviews, and guidance.

A big thanks to goes to my family, especially to my loving wife, Jeannette, for being
very patient and supportive throughout the time of writing this book. Also to my won-
derful five-year-old son, Joshua, who sacrificed his free time, allowing me to write when
I explained to him what I was doing. He likes the cover picture a lot!

I also thank my family in India for their wonderful support and love.

In memory of my loving Dad!

xii | Preface

http://www.madhusudhan.com
http://twitter.com/mkonda007

CHAPTER 1

Integration Fundamentals

Introduction
In an Enterprise world, applications talking to other applications is inevitable. Devel-
oping Enterprise applications can be a big challenge, especially when it involves work-
ing with a mixture of disparate systems. Organizations continuously search for higher
productivity associated with lower costs in bringing any Enterprise applications to the
table. Over the last few years, messaging has been adopted as one of the preferred
choices for Enterprise application communications.

Implementing messaging solutions has become easier over the last few years, but the
complexities of integration are still a big hurdle. Many frameworks were created to
address the issues surrounding integration. One such framework from Spring devel-
opers is Spring Integration. It is designed to implement well-known Enterprise Appli-
cation Integration (EAI) patterns. As a well-built framework, Spring Integration makes
inter- and intra-application messaging a breeze.

In this chapter, we look into Enterprise Integration from a general standpoint. We
discuss the problem space that Spring Integration Framework is addressing. We intro-
duce the framework very briefly and analyze Spring Integration’s role in creating a
sound messaging solution.

Integration Strategies
You may have seen applications reading configuration from a file system, persisting
data to a database, sending messages to an external client, publishing email, FTPing
daily snapshots, and performing other routine tasks. Whether you know it or not, your
application is talking to different systems—File System, Database, email, FTP, etc. You
may even have developed some sort of adapter that will integrate your application with
these external systems.

1

Integrating disparate systems is not an uncommon task. Before the advent of integration
frameworks, there were common strategies in the integration space. The most popular
strategies are:

• Shared File Systems: Two or more applications share a common file system; one
may write to it while the other may poll the file system to read it. The sender and
receiver are decoupled in this case. This solution certainly works, but has draw-
backs like performance, reliability, and dependency on the File system.

• Single Database: In this strategy, applications share the data from a single data-
base. One application writes data to the table while the other simply reads from
the table. The drawback is that this setup forces applications to use a unified
schema throughout the organization. Shared databases also pose a few other issues,
such as network lag and lock contention.

• Messaging: This strategy mainly encourages and supports sender-receiver
decoupling. A sender application sends a piece of data enclosed in a message to a
messaging middleman and forgets about it. A consumer consumes the message
whenever it can and begins its own workflow. One of the advantages of using
Messaging as the medium is that the sender and receiver are decoupled completely.
Also, the messages can be enriched, transformed, routed, and filtered before hitting
the end channels.

We will examine the Messaging strategy and how Spring Integration gives us the tools
to develop a full-fledged application.

Messaging Patterns
We all know that in our day-to-day life, there are some common problems that may
have common solutions. In the messaging domain, too, you can observe such recurring
problems and encounter some solutions to them. These common solutions are recor-
ded as patterns. During the last couple of decades, formal patterns emerged for some
of the recurring problems. Instead of reinventing the wheel, one could create the sol-
utions using the approach laid out by these patterns. For example, to decouple the
sender and receiver, one can introduce a Message pattern—the sender sends a message,
while the receiver receives this message. Each party is unaware of the other.

Any messaging system has a few building blocks to work with, such as Messages,
Channels, Transformers, etc. These are identified as patterns and discussed later in the
chapter.

One pattern that might require a mention is the pipes and filters pattern.

Let’s look at a very simple example to demonstrate this pattern—a Unix pipeline (|)
command. Most of us should be familiar with this command.

2 | Chapter 1: Integration Fundamentals

The pipeline command, denoted by |, is used to combine several Unix commands to
achieve a complex task. Although it looks simple, this example shows the powerful
concept of the pipes and filters architecture.

Our requirement is to find the word count of Just Spring in the just-spring-
titles.txt file. Run the command as shown below to achieve this:

mkonda$ cat just-spring-titles.txt | grep "Just Spring" | wc -l

Going into detail, the above command consists of three endpoints and two channels.
The cat, grep, and wc are the endpoints while the pipe (|) acts as a channel.

The cat command displays the contents of the file. But the display, instead of being
sent to the screen, is sent to the grep command using the pipe. The grep command then
picks up the contents and searches for the Just Spring string. The result is then passed
on to another command, wc, in this case. This simply displays the word count on the
screen.

Note that these commands do not know anything about each other. These are small,
narrowly focused tools that take in messages and publish them. They don’t depend on
each other’s API and can be developed independently.

If you are familiar with JMS or distributed technologies, you may have heard of Enter-
prise Messaging. Your application talking to another application over the network can
be considered an Enterprise application. You may have to use an application server to
host these applications if you want to expose services so other applications can call the
service according to their needs.

However, we can also introduce messaging to a standalone program that may run in a
single process (single JVM). Spring Integration is one such framework for inter- and
intra-application messaging.

While knowing these patterns will help you understand Spring Integration technology,
it is not a requirement. The Spring Integration framework is developed to implement
the patterns discussed in Enterprise Integration Patterns by Gregor Hohpe and Bobby
Woolf. I would advise you to read this book to understand the EAI subject in depth.

Traditional Programming Model
Let’s consider an application that loads Trades from an external system (File, in this
example). The requirements of processing these Trades are as follows:

• Trades should be segregated based on Trade types (NEW, CANCEL, AMEND, etc).

• Trades are then processed accordingly and persisted.

• An auditor tool should be notified once the Trades are persisted.

These are typical application requirements. Usually, one can code them in a single
component, as shown in the example below:

Integration Strategies | 3

//Pseudo code
public class TradesLoader {
 private List<Trade> trades = null;

 public void start(){
 trades = loadTrades(tradesFile);

 (for Trade t: trades){
 processTrade(t);
 persistTrades(t);
 auditNotify(t);
 }
 }

 public void processTrade(Trade trade){
 if (t.getStatus().equalsIgnoreCase("new")) {
 processNewTrade();
 } else if (t.getStatus().equalsIgnoreCase("ammend")) {
 processAmmendTrade();
 } else {
 processOtherTrade();
 }
 }

 public void loadTrades(File fromFile){ .. }
 public void persistTrades(Trade trade){ .. }
 public void auditNotify(Trade trade){ .. }

 public static void main(String[] args) {
 new TradesLoader().start();
 }
}

The loadTrades method reads the file and transforms its content into a list of Trades.
Each Trade is then sent through various actions, such as processing, persisting, and
notifying, as shown in the snippet above.

The drawback of this model is that the process typically works sequentially. Please see
Figure 1-1, which illustrates this model.

There is no harm in adopting this programming model, except that the component is
tightly coupled to a business workflow. If we have to add another workflow, such as
raising a notification for all big Trades or creating a task to collect Trade patterns, then
we have to burn our keyboards writing more if-else statements.

Did you also notice that the above TradesLoader is doing too much work, instead of
just doing its basic job of loading Trades?

In order to reduce its burden, we have to refactor it so it will only load Trades. Its
responsibility should end once the loading is finished and is decoupled from doing
other processes.

4 | Chapter 1: Integration Fundamentals

So, how can we enhance the above TradesLoader to adapt to various scenarios that
develop over a period of time?

One way is to use Messaging in our standalone application.

In this scenario, the TradesLoader fetches the Trades and posts them onto an internal
data structure (a queue) before exiting. The relevant components, such as
TradeProcessor, TradePersistor, and TradeNotifier will be working on their respective
jobs to satisfy the workflow. They all can work at their own pace and not be bothered
by the sequential processing anymore.

Standalone Messaging Model
The TradesLoader component can be refactored to do its job of loading the Trades from
a file. In order to complete its task, the TradesLoader will publish the Trades to a data-
holding structure like a bucket. In Messaging terms, this is called a destination or a
channel. The rest of the components should be picking up the Trades from this channel,
which acts as a conduit.

Note that we did not introduce a full-blown enterprise messaging solution here. It
would be overkill, because it would introduce a whole stack of infrastructure and open
doors to different programming models.

Figure 1-1. Serial Processing

Standalone Messaging Model | 5

See Figure 1-2, which depicts a sort of parallel process using a standalone messaging
model.

Figure 1-2. Standalone Messaging

The Spring Integration framework is an excellent choice for this type of messaging
solution. If you are already familiar with Spring Framework or if your project is already
springified, then you are in good hands. Spring Integration is perceived as an extension
of the Spring Core, so you will obtain all the benefits of dependency injection, decou-
pling, testability, etc. You do not need to have an application server to host your mes-
saging solution when you use Spring Integration—which is a big advantage, as you
don’t have to invest time and money in adopting the messaging technologies.

We will look at the framework in detail in the next chapter.

6 | Chapter 1: Integration Fundamentals

Summary
This chapter has scratched the surface of Enterprise integration fundamentals. It in-
troduced messaging strategy patterns. It touched the pipes and filters pattern upon
which Spring Integration Framework is based. It also discussed the sequential process-
ing programming model against the standalone messaging mode. It set the scene for
the in-depth coverage of the framework in the coming chapters.

Summary | 7

CHAPTER 2

Basics

Introduction
The Spring Integration framework is built on a few basic building blocks—Messages,
Channels, and Endpoints. Messages are the containers of data, while channels are the
addresses holding these messages. Endpoints are components that connect to the
channels to consume or publish messages. The next few chapters will discuss these
building blocks at length, but we’ll touch on them in this chapter, as well.

The Message component is discussed here, while the rest of the components (channels,
endpoints, etc.) will be discussed in their own chapters later on.

Messages
Messages are the objects that carry information between two applications. They are
constructed at one end, usually the producer side of the messaging application. They
are then consumed and deconstructed at the other end, the consumer/subscriber side.
Think of the message as an object that carries business data, such a new Account or
Trade information. The publisher/producer creates these objects and publishes them
to a channel. A subscriber/consumer connected to the same channel then receives those
messages. The domain objects are then resurrected from these messages, and business
processing is carried out.

Dissecting a Message
The Message consists of two parts—the payload and header properties.

Imagine a greeting card arriving in your mailbox on your birthday. The card inside the
envelope may be called the payload. Payload is the data or the information that has to
be processed by the interested parties. The greeting card also has some additional in-
formation—the sender’s and receiver’s addresses, first- or second-class delivery, and

9

possibly instructions such as “Handle with Care.” Such additional pieces of informa-
tion are header properties.

The payload and header properties are represented as a Message interface in Spring In-
tegration, as shown below:

public interface Message<T> {
 T getPayLoad();
 MessageHeaders getHeaders();
}

Figure 2-1 depicts the TradeMessage composition.

Figure 2-1. Message Composition

From the above definition of a Message, you can set any Plain Old Java Object (POJO)
as a payload. If you are familiar with JMS, you will remember that the payload object
should be serializable.

In Spring Integration’s world, this restriction is lifted. However, the MessageHeaders
class will implement a Serializable interface:

public final class MessageHeaders
 implements Map<String, Object>, Serializable { ... }

As shown in the above definition, headers take the set of properties as string value pairs.

In the Account example, the details of the account such as name, address, initial balance,
etc., form the part of the payload. The header constitutes name-value pairs of properties
such as which channel to be sent to, what type of priority to associate with it, etc.

Generic Implementation
Framework provides a concrete implementation of the Message interface called
GenericMessage. You can create an instance of GenericMessage using one of the two
provided constructors—one with payload and the other with payload and header prop-
erties. However, you are strongly advised to use a utility class MessageBuilder instead.
The following snippet demonstrates this:

// Create payload object
Account a = new Account();

10 | Chapter 2: Basics

// creating a map with header properties
Map<String, Object> accountProperties
 = new HashMap<String, Object>();

// Set our header properties
accountProperties.put("ACCOUNT_EXPIRY","NEVER");

// Use MessageBuilder class to create a Message
// and set header properties

Message<Account> m =
 MessageBuilder.withPayload(a)
 .setHeader("ACCOUNT_EXPIRY", "NEVER")
 .build();

The MessageBuilder utility class is used to create and manipulate Message and its head-
ers. This class follows the builder pattern.

Message Channels
While Message represents a container for information data, the channel represents the
location where it is being sent. Simply put, the message ends up at a prespecified address
called channel before being used by someone else. The sender and receiver will be
encoded with the information of the channels. See Figure 2-2, depicting the Message
channels. In Spring Integration, the channel is represented by a MessageChannel
interface.

Figure 2-2. Message Channels

Message Channels | 11

Declaring Channels
Spring Integration provides a declarative model to create channels so we don’t have to
instantiate channels using Java classes. Declaring a channel is simple and straightfor-
ward, as shown in the following snippet:

<beans
 xmlns:int="http://www.springframework.org/schema/integration"
 xsi:schemaLocation="http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-integration-2.1.xsd"
 ...
 >

 // declaratively creating a channel
 <int:channel id="newAccounts">
</beans>

Note that since the channels, along with other messaging components, are defined in
the integration XML namespace, please make sure your XML file consists of the above
namespaces.

Out of the box, the framework provides a few concrete implementations, such as
QueueChannel, PriorityChannel, and RendezvousChannel. Although there are a few dif-
ferences among all the channel implementations, the underlying principle is to behave
as an address for an endpoint. We will discuss channels in the next chapter.

Endpoints
Endpoints are basically components that consume messages from an input channel and
deliver to an output channel. They may only consume messages from an input channel
or only produce messages to an output channel. They are the crucial pieces that com-
bine our business logic with integration specifications. The message endpoints are cre-
ated declaratively so that applications concentrate on their business logic alone.

The Framework provides several out-of-the-box endpoints such as Transformers, Split-
ters, Filters, Routers, etc. It also provides endpoints (adapters) that connect to external
systems like JMS, FTP, JDBC, Twitter, etc. You can also extend and create an Endpoint
if you have a new requirement for an adapter fetching data from the moon.

We will be discussing the endpoints in later chapters, but if you are eager to see end-
points in action, here’s an example of declaring a Service Activator endpoint.

Service Activator Endpoint Example
A Service Activator is a generic endpoint that invokes a method on a bean when a
message arrives at an input channel. Declaration of the endpoint is shown in the fol-
lowing snippet:

12 | Chapter 2: Basics

<int:service-activator input-channel="positions-channel"
 ref="newPositionProcessor"
 method="processNewPosition">
</int:service-activator>

// bean to be invoked
<bean id="newPositionProcessor"
class="com.madhusudhan.jsi.basics.NewPositionProcessor" />

The service-activator endpoint picks up a message as soon as it arrives on the
positions-channel and calls the processNewPosition method on the bean. Any code
required to fetch messages or invoke the bean’s method is already included in the
service-activator snippet. This is the power of the framework.

Example
Now that we have seen the various building blocks of the framework, let’s see a working
example. Don’t worry too much if the components appearing in the example don’t
makes sense. You will understand all of them as we progess through the book.

A Trader may use a web application to place a Trade. The Trades are sent to a JMS
destination, where they are processed by another component to book the Trades. The
requirement is to connect to a JMS Destination and fetch the Trades and process them.

The Spring Integration framework helps you focus on coding the business logic while
it handles the mundane tasks. You can use an adapter (inbound-channel-adapter) to
pick up the messages from an input JMS Queue. The declaration of the adapter is given
below:

<int:channel id="trades-channel"/>

<jms:inbound-channel-adapter id="tradesJmsAdapter"
 connection-factory="connectionFactory"
 destination="tradesQueue"
 channel="trades-channel">

 <int:poller fixed-rate="1000" />
</jms:inbound-channel-adapter>

<bean id="tradesQueue"
 class="org.apache.activemq.command.ActiveMQQueue">
 <constructor-arg value="TRADES_QUEUE" />
</bean>

<bean name="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL">
 <value>tcp://localhost:61616</value>
 </property>
</bean>

The inbound-channel-adapter element declaration takes away all the boilerplate code.
It makes a connection to the JMS Destination, fetches the data from positionsQueue,

Endpoints | 13

converts the message to our internal format, and finally publishes the Trades to our
internal channel, trades-channel. The connection-factory element provides the nec-
essary information on where the endpoint should connect to fetch the messages (in this
case, an AMQ server running on localhost).

Now, we wire in a Service Activator endpoint to be invoked for every new Trade
message. This endpoint simply picks up the incoming message from trades-channel
and invokes the processNewTrade method on NewTradeProcessor bean.

<int:service-activator
 input-channel="trades-channel"
 ref="newTradeProcessor"
 method="processNewTrade">
</int:service-activator>

// bean that would be invoked
<bean id="newTradeProcessor"
 class="com.madhusudhan.jsi.basics.NewTradeProcessor" />

Next, we write a simple Java class NewTradeProcessor with a processNewTrade method
that takes in the Trade message:

public class NewTradeProcessor {

 public void processNewTrade(Trade t){
 // Process your trade here.
 System.out.println("Message received:"+m.getPayload().toString());
 }
}

Write a test class that loads this XML file and publishes a dummy Trade as shown
below:

public class NewTradeProcessorTest {
 private ApplicationContext ctx = null;
 private MessageChannel channel = null;

 // Constructor which instantiates the endpoints
 public NewTradeProcessorTest() {
 ctx = new ClassPathXmlApplicationContext("basics-example-beans.xml");
 channel = ctx.getBean("trades-channel", MessageChannel.class);
 }

 private Trade createNewTrade() {
 Trade t = new Trade();
 t.setId("1234");
 ...
 return t;
 }

 private void sendTrade() {
 Trade trade = createNewTrade();
 Message<Trade> tradeMsg =
 MessageBuilder.withPayload(trade).build();
 channel.send(tradeMsg, 10000);

14 | Chapter 2: Basics

 System.out.println("Trade Message published.");
 }

 public static void main(String[] args) {
 NewTradeProcessorTest test = new NewTradeProcessorTest();
 test.sendTrade();
 }
}

The framework provides endpoints that can be configured using XML notations that
will take away the bulk of the work. Instead of writing code, we use the declarative
model.

Summary
This chapter has given you an overview of the goals of the Spring Integration frame-
work. It introduced the basic building blocks of the framework—the messages,
channels, and endpoints. The chapter explained the fundamentals by providing simple
examples.

Summary | 15

CHAPTER 3

Message Channels

Introduction
We all have a postal address where presents from Santa may end up (if he mails them,
of course) for Christmas. Message channels resemble such addresses where the mes-
sages will be sent or received. Producers and consumers do not talk to each other di-
rectly but communicate via these channels. The decoupling of the sender and receiver
components is primarily achieved by using channels. Channels represent pipes in our
pipes and filters pattern. You can create a complex integration solution consisting of
channels and endpoints.

This chapter mainly focuses on configuring and using these channels.

Message Channels
We have seen in the previous chapter that the MessageChannel interface has methods
to send data using a Message object.

boolean send(Message message);
boolean send(Message message, long timeout)

Both the methods above will take the Message as a parameter. The first method pub-
lishes the message but does not return control until it successfully executes the sending
operation. This is not desirable due to wastage of CPU cycles. In this situation, the
second send method takes over. When the message is not delivered for whatever reason
after a predefined time, the second method steps in and throws an exception.

Note the return value of these methods, boolean, indicates the success or failure of the
message delivery.

The timeout variable can be set to zero, positive, or negative values.

If the timeout variable is negative, the thread will block indefinitely until it is able to
publish the message successfully. If it is set to zero, the send method will return in-
stantly, whether the sending was successful or not. If it is greater than zero, the sending

17

thread will honor that amount of time before throwing an error if it is unable to push
the message to the channel.

The interesting point is that the MessageChannel interface does not define any methods
for receiving messages. Receiving a message largely depends on the receiver’s semantics:
Point-to-Point (P2P) or Publish/Subscribe (Pub/Sub).

In a P2P mode, only one receiver will get the message delivered, even if multiple
receivers are connected to that channel. It is valid to have more than one consumer
connected to a channel, but the consumer may be selected randomly (or using a round-
robin strategy). In a pub-sub mode, the message is delivered to all consumers who have
subscribed to that channel. This means that each message is copied and provided to
the subscribers.

There’s one more thing to consider: message buffering. The incoming messages are
buffered in order to stop flooding the consumers. The messages are kept in a queue—
in internal memory or to a durable storage area, depending on the configuration. There
are ways of persisting the messages onto a durable storage area, which we will see in
coming chapters.

So, the takeaway point is—clients choose the channels depending on delivery mode
(P2P or Pub/Sub) and buffering or non-buffering semantics. There are two separate
interfaces that deal with the receiving side of messages.

Receiving Messages
The Spring Integration framework exposes the delivery modes using two separate
interfaces—PollableChannel and SubscribableChannel. As both of them extend the
MessageChannel, the send methods are automatically inherited.

Point-to-Point Mode

In a P2P mode, the consumer can simply use any of the PollableChannel implementa-
tions.

The following code snippet illustrates the PollableChannel interface:

public interface PollableChannel extends MessageChannel {
 // This call blocks the thread until it receives a message
 Message<?> receive();

 // This call will wait for a specified timeout before
 // throwing a failure if message is not available
 Message<?> receive(long timeout);
}

There are two receive methods, one with and the other without a timeout. The method
without timeout blocks forever, so use this method with caution; the other method
waits for a predefined time and exits if a message is not found.

18 | Chapter 3: Message Channels

Out of the box, the framework provides such concrete implementations as
QueueChannel, PriorityChannel, and RendezvousChannel. As the name indicates,
QueueChannel also has the capability of buffering the messages. PriorityChannel and
RendezvousChannel are finer implementations of the QueueChannel and they exhibit P2P
and buffering characteristics.

Instead of creating these concrete classes in Java code, the Spring container can create
them when the application starts.

P2P Example

The following code demonstrates the process of receiving messages in P2P mode:

public class QueueChannelTest {
 private ApplicationContext ctx = null;
 private MessageChannel qChannel = null;

 public QueueChannelTest() {
 ctx = new ClassPathXmlApplicationContext("channels-beans.xml");
 qChannel = ctx.getBean("q-channel", MessageChannel.class);
 }
 public void receive() {
 // This method receives a message, however it blocks
 // indefinitely until it finds a message
 // Message m = ((QueueChannel) qChannel).receive();

 // This method receives a message, however it exists
 // within the 10 seconds even if doesn't find a message
 Message m = ((QueueChannel) qChannel).receive(10000);
 System.out.println("Payload: " + m.getPayload());
 }
 }

Using the receive method without a timeout may incur the following consequence:
until a message appears on the channel, the current thread will block indefinitely. While
the second method attempts to receive a message from the channel, it will quit if the
message doesn’t appear within the predefined time (10 seconds in the example), thus
saving the CPU cycles.

You can also indicate zero as the timeout to the receive method, which means the
method returns immediately even if it can’t find the message. Supplying a negative
timeout will also block a call—it is as good as using the receive method without a
timeout.

The channels-beans.xml is the configuration file that has the definition of our queue-
channel, as shown here:

<int:channel id="q-channel">
 <int:queue capacity="10" />
</int:channel>

The queue-channel is set with a capacity of 10 elements. There are various implemen-
tations of the channel, which we will see shortly.

Message Channels | 19

Pub/Sub Mode

For receiving messages in Pub/Sub mode, use SubscribableChannel. As described earlier,
each message will be broadcast to all registered subscribers. In this mode, all subscribers
will receive the message before it is removed from the channel. By contrast, in P2P mode,
many consumers may have registered with the channel, but only a single subscriber
will be selected to process the message.

The following code snippet illustrates the SubscribableChannel interface definition:

public interface SubscribableChannel extends MessageChannel {
 // to subscribe a MessageHandler for handling the messages
 boolean subscribe(MessageHandler handler);

 // unsubscribe
 boolean unsubscribe(MessageHandler handler);
}

The interface has two methods, one to subscribe and another to unsubscribe a
MessageHandler. A MessageHandler is an instance provided by the client to process in-
coming messages. For each channel, zero or many handlers are registered by the client.
For every message that appears on the channel, the framework delivers each message
to the registered handlers by invoking the only method, handleMessage():

public interface MessageHandler{

 // this method is invoked when a fresh message appears on the channel
 void handleMessage(Message<?> message) throws MessagingException;

}

The handleMessage is where the application holds the logic to process the incoming
message.

Pub/Sub Example

Let’s see an example of the Pub/Sub mode of reception. The following snippet demon-
strates this example:

public class ChannelTest {
 private ApplicationContext ctx = null;
 private MessageChannel pubSubChannel = null;

 public ChannelTest() {
 ctx = new ClassPathXmlApplicationContext("channels-beans.xml");
 pubSubChannel = ctx.getBean("pubsub-channel", MessageChannel.class);
 }

 public void subscribe() {
 ((PublishSubscribeChannel)pubSubChannel).subscribe(new TradeMessageHandler());
 }

 class TradeMessageHandler implements MessageHandler {
 public void handleMessage(Message<?> message) throws MessagingException {

20 | Chapter 3: Message Channels

 System.out.println("Handling Message:" + message);
 }
 }
}

The TradeMessageHandler is the handler class that is subscribed to the pubsub-
channel. It implements the MessageHandler interface. The framework invokes the
handleMessage() method for any incoming messages. Ideally, this is the entry point to
our client.

When a message arrives on the pubsub-channel, the following output is the result:

Handling Message:[Payload=Trade [id=1234, direction=BUY,
 account=B12D45,security=null, status=NEW]]
 [Headers={timestamp=1328090013863, id=d144f752-a846-468c-a4c3-0a265f3062ff}]

The payload and headers of the message are printed out onto the console. The payload
of the message is Trade and the toString() method is invoked.

The configuration of the channel in the XML file is simple: the publish-subscribe-
channel tag represents a PublishSubscribeChannel shown below:

<int:publish-subscribe-channel id="pubsub-channel"/>

Now that we have seen the high level usage of channels, let’s look at the various
implementations.

Queue Channel
This channel exhibits Point-to-Point characteristics—meaning only one consumer will
receive the message—but remember, there is no restriction for creating multiple con-
sumers here. This channel also supports buffering messages as it uses a queue data
structure to hold the messages in memory. As it implements a queue, there is a capacity
associated with it. Note that the default constructor without a capacity parameter cre-
ates a channel with unbounded capacity.

The channel is declared using integration namespace support as shown below:

<int:channel id="newAccounts">
 <int:queue capacity="100"/>
</int:channel>

The above configuration creates a Queue channel with a capacity for 100 elements. If
you omit the queue capacity, the channel will be created with an unlimited capacity.
Take extra care when creating unlimited capacity channels as they will drain your ap-
plication’s memory. If capacity is not provided, Integer.MAX_VALUE is assumed as its
capacity.

What happens to the sender if there is no room for any additional messages to be
published? This can happen if the consumer is slow or dead. The queue will fill up, as
no consumer is consuming the messages. In this case, the sender will either be blocked

Message Channels | 21

until space is available or timeout occurs, depending on the send method used (please
see Figure 2-2 for an explanation of message sending).

Note that the QueueChannel implements First In First Out (FIFO) ordering. The data
structure in the backend is a standard java.util.concurrent.LinkedBlockingQueue
implementation.

The QueueChannel also provides a method to purge the channel with a predefined
selection criteria via the MessageSelector implementation:

public List<Message<?>> purge(MessageSelector selector){ .. }

To purge the channel completely, simply pass null as the selector to the method. This
will wipe off the whole queue.

Priority Channel
The PriorityChannel is a subclass of QueueChannel with just one additional character-
istic—prioritization of messages. If you need to send a high-priority message immedi-
ately, then PriorityChannel is the one to use. The easiest way is to set the PRIORITY
property on the MessageHeader when creating a message.

Let’s look at an example to create a message with priority. The publishPriorityTrade
method publishes a new Trade onto the provided channel. Priority of the message is
set by using the MessageHeader’s PRIORITY property. Its value is an integer, thus the
higher the value, the higher the priority.

public void publishPriorityTrade(Trade t) {
 Message<Trade> tradeMsg = MessageBuilder.withPayload(t).
 setHeader(MessageHeades.PRIORITY, 10).build();

 priorityChannel.send(tradeMsg, 10000);

 System.out.println("The Message is published successfully");
}

Messages with a higher priority will end up at the top of the queue, while the lower-
priority messages will be pushed down. The default behavior is to use MessageHeaders’
PRIORITY property to sort the messages.

In order to create a priority channel, use the priority-queue element as shown in the
following XML code:

<int:channel id="newAccounts">
 <int:priority-queue capacity="10" />
</int:channel>

The priority-queue tag lets the framework create a PriorityChannel with a given
capacity.

22 | Chapter 3: Message Channels

If you need to further customize priorities, you need to provide your own comparator
by implementing Comparator<Message<?>> to the constructor. The following code snip-
pet shows the AccountComparator:

public class AccountComparator implements Comparator<Message<Account>> {

 @Override
 public int compare(Message<Account> msg1, Message<Account> msg2) {
 Account a1 = (Account)msg1.getPayload();
 Account a2 = (Account)msg2.getPayload();

 Integer i1 = a1.getAccountType();
 Integer i2 = a2.getAccountType();

 return i1.compareTo(i2);
 }
}

Once you define the Comparator, you need to let the framework know you are going
to use it for all the messages coming into the priority channel. You do this by using the
comparator tag:

<int:channel id="newAccounts">
 <int:priority-queue capacity="10" comparator="accountComparator"/>
</int:channel>

<bean id="accountComparator" class="com.madhusudhan.jsi.channels.AccountComparator"/>

The priority-queue expects capacity and comparator values. In the above snippet, we
set the AccountComparator as the comparator on the channel.

Rendezvous Channel
Rendezvous Channel is a subclass of QueueChannel, and exhibits P2P characteristics. Un-
like QueueChannel, it implements a zero capacity queue. In the backend, it uses a
SynchronousQueue data structure. This means that at any time, only one message can
exist on the channel. When a producer sends a message, it will block until that message
is consumed by the consumer. Similarly, a consumer will be blocked until a message
appears on the channel.

You define the rendezvous channel in your XML config using rendezvous-queue, as
shown below:

<int:channel id="newAccounts">
 <int:rendezvous-queue/>
</int:channel>

The RendezvousChannel is ideal when you wish to receive a reply for your request. The
client will post a request message with a property in the message headers as a reply
channel:

public void sendTradeToRendezvous(Trade t) {
 Message<Trade> tradeMsg = MessageBuilder.withPayload(t).

Message Channels | 23

 .setHeader(MessageHeaders.REPLY_CHANNEL, "replyChannel").build();
 rendezvousChannel.send(tradeMsg, 10000);
 System.out.println(t.getStatus()
 + " Trade published to a Rendezvous channel");
}

Once the message is received, the consumer inspects the header to see if a reply needs
to be sent to a REPLY_CHANNEL.

Message m =
 ((RendezvousChannel) rendezvousChannel).receive(10000);

//get the reply channel
MessageChannel replyChannel =
 (MessageChannel) m.getHeaders().get(MessageHeaders.REPLY_CHANNEL);

//send a reply to it
replyChannel.send(..);

PublishSubscribe Channel
Use PublishSubscribeChannel if you need to send a message to multiple consumers.
This is the implementation of the SubscribableChannel interface out of the box. There
are no receive methods in this channel because the message reception is handled by a
subscriber called MessageHandler.

The declaration of the channel in an XML config file is simple and straightforward:

<int:publish-subscribe-channel id="newAccounts" />

The publish-subscribe-channel tag identifies the channel as PublishSubcribeChannel.
Once you have a reference to the channel, you need to set a handler:

public class PubSubTest{
 MessageHandler handler = new TradeMessageHandler();
 private ApplicationContext ctx = null;
 private PublishSubscribeChannel pubSubChannel = null;
 ...
 // subscribe to the channel
 public void subscribe() {
 boolean handlerAdded = pubSubChannel.subscribe(handler);
 System.out.println("Handler added?" + handlerAdded);
 }

 // Unsubscribe using the same channel and handler references.
 public void unsubscribe() {
 boolean handlerRemoved = pubSubChannel.unsubscribe(handler);
 System.out.println("Handler removed?" + handlerRemoved);
 }

 //Handler to handle the messages
 class TradeMessageHandler implements MessageHandler {
 public void handleMessage(Message<?> message) throws MessagingException {
 System.out.println("Handling Message:" + message);
 }

24 | Chapter 3: Message Channels

 }
}

When a message appears on the channel, it invokes the registered handler passing on
the message for further processing.

Direct Channel
DirectChannel is a mixed type channel with both P2P and Pub/Sub characteristics. It
implements SubscribableChannel so you need to have a concrete implementation of
MessageHandler subscribing to it. Messages can be consumed by subscribed handlers,
but only one subscriber will be getting each message, thus displaying P2P semantics.
Even if you have registered multiple subscribers, the channel will deliver to only one of
them. The framework uses the round-robin strategy to choose a recipient from the
multiple subscribers.

The production and consumption of the message are both executed in the same thread.
This usage is very helpful for Enterprise applications with transactions spanning mul-
tiple resources.

With no additional overhead for its creation, this channel is chosen to be a default
channel. We have already seen in our earlier examples how the channel is defined in
XML:

<int:channel id="newAccounts"/>

If multiple handlers are subscribed to the channel, these two questions—which sub-
scriber will be chosen to process the message and what happens if a chosen handler is
unable to process the message—will be answered by the load-balancer and failover
properties.

The load-balancer flag chooses an appropriate load-balancing strategy to select one of
the handlers. The out-of-the-box strategy is the round-robin strategy.

The failover property is a Boolean flag. If set to true, it will let the subsequent handlers
process the messages if the initial chosen handler throws an exception while handling
the messages for whatever reason. By default, the failover flag is set to true.

Because the DirectChannel delegates its functionality of handling subscribers to a
MessageDispatcher, both properties are set on a dispatcher attribute:

<int:channel id="newAccounts">
 <dispatcher failover="false" load-balancer="round-robin"/>
</int:channel>

Note that the load-balancer on the channel is by default set to the round-robin strategy,
so you do not have to declare as shown above. If you wish to ignore the load-balancing
strategy, set the load-balancer to none value.

Message Channels | 25

Executor Channel
The ExecutorChannel implements SubscribableChannel and is similar to the
DirectChannel, except that the dispatching of the message is carried by a java.uti.con
current.Executor instance. Unlike the sending thread taking full control in
DirectChannel implementation, the send thread completes its execution after publish-
ing the message in ExecutorChannel. The consumption of the message is processed in
a separate thread handled by the dispatcher. The dispatcher invokes the executor for
message processing by the consumer.

<int:channel id="newAccounts">
 <int:dispatcher task-executor="accountsExecutor"/>
</int:channel>

// define the executor
<bean id="accountsExecutor"
 class="com.madhusudhan.jsi.channels.AccountsExecutor"/>

You can set a load-balancing strategy and failover using the load-balancer and fail
over attributes on dispatcher as we did on DirectChannel. The default values are round-
robin strategy with failover enabled.

<int:channel id="newAccounts">
 <int:dispatcher load-balancer="none"
 failover="false"
 task-executor="accountsExecutor"/>
</int:channel>

Null Channel
The Null Channel is PollableChannel used primarily for testing purposes. The sending
methods always return true, indicating the operation is successful, while the receiving
methods always get a null message. Internally, the code does not create any queues,
but returns true on a send operation or null on a receive operation immediately. For
the complete picture (and if you are curious like me), see the actual implementation of
the send and receive methods in the framework:

// This is the framework class implementation
public class NullChannel implements PollableChannel {
 // send will always return true
 public boolean send(Message<?> message) {
 if (logger.isDebugEnabled()) {
 logger.debug("message sent to null channel: " + message);
 }
 return true;
 }

 // receive will return null always
 public Message<?> receive() {
 if (logger.isDebugEnabled()) {
 logger.debug("receive called on null channel");
 }

26 | Chapter 3: Message Channels

 return null;
 }
...
}

Summary
Message channels are the primary components that separate producers from consum-
ers. This chapter explained the various message channels in detail. The channels that
one should select depend on either P2P or Pub/Sub nature. In a P2P, only one consumer
receives, while in a Pub/Sub model, all registered subscribers receive a copy of the
message. In addition, Spring Integration provides a functionality for buffering the mes-
sages in order to avoid over-flooding the consumers. The various out-of-the-box im-
plementations of channels cater to these characteristics.

Summary | 27

CHAPTER 4

Endpoints

Introduction
A well-designed messaging application separates business logic from integration de-
tails. The application code concentrates on implementing the business logic. The con-
nection mechanism, the message sending and receiving and other aspects of messaging
are hidden from the application. It would be a good design to implement them using
declarative programming so the program behavior can be altered based on the changing
needs of the business.

Message Endpoints are components that separate business logic from the messaging
framework. They are crucial in the integration space for hiding the messaging details.
They are responsible for connecting application components to the messaging channels
to send or receive messages.

Spring Integration provides endpoints such as Service Activators, Channel Adapters,
Message Bridges, Gateways, Transformers, Filters, and Routers. This chapter introdu-
ces common endpoints such as Service Activators, Channel Adapters, Message Bridges,
and Gateways, while the following chapters discuss Transformers, Filters, Aggregators,
Routers, and the rest.

If you are interested in the framework’s classes designed to create these endpoints, then
you should read the “For the Curious: Endpoint API” on page 38 section at the end of
this chapter. It discusses in detail the inner workings of these endpoints. Note that you
will not be required to use these API classes in your code. You should use the declarative
model and appropriate namespaces to configure these endpoints.

Common Endpoints
We have touched upon one of the common endpoints in an earlier chapter—Service
Activators. In this section, we will discuss this in detail, and other endpoints, too. First,
make sure that you have the integration namespace declared in your XML file for these
endpoints:

29

...
xmlns:int="http://www.springframework.org/schema/integration"

xsi:schemaLocation="http://www.springframework.org/schema/integration
 http://www.springframework.org/schema/integration/spring-integration-2.1.xsd"
...

Service Activator
The Service Activator is a generic endpoint which invokes a method on a bean whenever
a message arrives on the channel. If the method has a return value, then the value will
be sent to an output channel if the channel is configured.

Configuring the activator using the namespace is relatively straightforward. Use the
service-activator element, setting input-channel and a ref to the bean:

<int:service-activator
 input-channel="positions-channel"
 ref="newTradeActivator"
 method="processNewPosition">
</int:service-activator>

<bean id="newTradeActivator"
 class="com.madhusudhan.jsi.endpoints.common.NewTradeActivator" />

Any message arriving at positions-channel will be passed on to a NewTradeActivator
(which the attribute ref points to) and the processNewPosition method is invoked
which is declared using the method attribute. If the bean class has only one method,
then you do not have to declare the method attribute—the framework resolves it as the
service method and invokes it appropriately.

The NewTradeActivator is a simple class that has a single method which expects a
Position object. This class is basically the entry point to acting as a service.

public class NewTradeActivator {
 Position position = ..
 public void processNewPosition(Position t) {
 System.out.println("Method invoked to process the new Position"+t);
 // process the position..
 // ...
 }
}

The method can return a non-null value which is wrapped in a Message and sent to an
output-channel. For example, if you wish to send a reply to another channel after pro-
cessing the Position, you can do this by simply returning the position as the method’s
return value:

// Return value will be wrapped in a Message
// and sent to an output channel
public Position processNewPosition(Position t) {
 System.out.println("Method invoked to process the new Position"+t);
 // process the position..

30 | Chapter 4: Endpoints

 // ...
 return position;
}

You may omit declaring the optional output-channel attribute. If you do, and if your
method has a return value, then the framework will use the message header property
called replyChannel to send the reply. An exception will be thrown if no replyChan
nel header property is found.

The service method can have either Message or a Java object as an argument. In the
latter case, the payload from the incoming message is extracted and passed on to the
message. As the incoming message is a Java Object, this mode will not tie our imple-
mentation to Spring API, making it a preferred option. In the above example, a
Position is wrapped up in a Message and sent to the channel.

Message Bridge
A MessageBridge is a simple endpoint that couples different messaging modes or adapt-
ers. An example of a common use of the bridge is to tie up a point-to-point (P2P) mode
channel to a Publish/Subscribe (Pub/Sub) mode. In a P2P mode, a PollableChannel is
used by the endpoint, whereas a PublishSubscribeChannel is used in Pub/Sub mode.

The MessageBridge is declared using the bridge element in the integration namespace:

<int:publish-subscribe-channel
 id="trades-in-channel" />

<int:channel id="trades-out-channel">
 <int:queue capacity="10" />
</int:channel>

<!-- Bridges pub/sub channel to a p2p channel -->

<int:bridge input-channel="trades-in-channel"
 output-channel="trades-out-channel" />

In the above snippet, the bridge picks up a message from the input channel and pub-
lishes onto the output channel. The input channel is PublishSubscribeChannel, while
the output channel is QueueChannel.

To complete our example, a service activator is hooked onto the output channel. As
soon as the message arrives at the output channel (via the bridge endpoint), the
PositionReceiver bean is invoked for action:

<int:service-activator
 input-channel="trades-out-channel"
 ref="positionReceiver"/>

<bean id="positionReceiver"
 class="com.madhusudhan.jsi.endpoints.PositionReceiver"/>

Common Endpoints | 31

Message Enricher
A Message Enricher component enriches the incoming message with additional infor-
mation and sends the updated object to the downstream consumers. For example, a
Trade normally consists of a piece of coded information, such as a security ID or a
customer account number. The reason for this is not only to keep the Trade object slim
and sleek, but also to protect the confidential information from other systems. This
data is attached while the Trade passes through different stages as and when required.

The Framework provides two types for enriching messages: Header Enricher and Pay
load Enricher.

Header Enricher

You can add additional header attributes to the message using the Header Enricher
component. Let’s say the incoming Trade message needs to have a couple of header
properties: SRC_SYSTEM and TARGET_SYSTEM. As these properties were not in the original
message, the message needs to be enriched. We use the header-enricher tag to do this:

<int:header-enricher
 input-channel="in-channel"
 output-channel="out-channel">
 <int:header name="SRC_SYSTEM" value="BBG" />
 <int:header name="TARGET_SYSTEM" value="LOCAL" />

</int:header-enricher>

As you can see, we added two properties to the outgoing message. So, if you print out
the headers of this message, the newly added properties should appear on the console:

Headers: {timestamp=1328187611172,
 SRC_SYSTEM=BBG, TARGET_SYSTEM=LOCAL, id=...}

You can set a number of predefined properties such as priority, reply-channel, error-
channel, etc.

This is the enhanced configuration for header-enricher:

<int:header-enricher id="maxi-enricher" input-channel="in-channel"
 output-channel="out-channel">
 <int:priority value="10"/>
 <int:error-channel ref="myErrorChannel"/>
 <int:correlation-id value="APP_OWN_ID"/>
 <int:reply-channel value="reply-channel"/>
 <int:header name="SRC_SYSTEM" value="BBG" />
</int:header-enricher>

<int:publish-subscribe-channel id="myErrorChannel" />

Note that the ref tag looks for a named bean while the value tag takes a literal value only.

Framework also supports setting header properties using payload by allowing the
header-enricher’s header property to refer to a bean:

32 | Chapter 4: Endpoints

<int:header-enricher id="pojo-enricher"
 input-channel="in-channel"
 output-channel="out-channel">
 <int:header name="ID"
 ref="tradeEnricher" method="enrichHeader"/>
</int:header-enricher>

The ID is set by extracting data from the payload with the help of the TradeEnricher
bean. The following snippet shows this bean, which has a simple functionality in re-
turning the ID attribute by reading the Trade’s ID and adding SRC to it at the end.

public class TradeEnricher {
 public String enrichHeader(Message m) {
 Trade t = (Trade)m.getPayload();
 return t.getId()+"SRC";
 }
}

Payload Enricher

If the requirement is to add or enrich the payload with additional information, use the
PayloadEnricher component. The enricher tag in the integration namespace is used
to configure the payload enricher. The workings of a payload enricher require a closer
look.

Let’s see the configuration first:

<int:enricher input-channel="in-channel"
 request-channel="enricher-req-channel"
 output-channel="stdout">
 <int:property name="price" expression="payload.price"/>
 <int:property name="instrument" expression="payload.instrument"/>
</int:enricher>

<int:service-activator input-channel="enricher-req-channel"
 ref="tradeEnricher">
</int:service-activator>

<bean id="enricherBean" class="com.madhusudhan.jsi.endpoints.enricher.Enricher" />
<bean id="tradeEnricher"
class="com.madhusudhan.jsi.endpoints.enricher.PriceEnricher" />

There’s a lot going on here. Like any other endpoint, the enricher expects a message in
the input-channel, too. It picks up the message and passes it on to request-channel and
waits for a reply. There should be some other component listening on this request-
channel to enrich the message. After enriching the payload, this component then pub-
lishes the reply back to the reply channel. The reply channel is declared as a header
property on the message itself (see the Price Message below). Once the enricher gets a
reply, it sets the properties with the enriched data by using expressions (See “Spring
Expressions” on page 37 later in this chapter for details about expressions).

In the above configuration, a Price is posted onto the in-channel. The Price message
does not have any data—no instrument or price set. The enricher then posts this

Common Endpoints | 33

Price onto the enricher-req-channel and waits for a reply. A service activator, which
acts as the enricher listening on the enricher-req-channel, consumes the messages and
enriches and returns the Price. The return value is published on the reply-channel.
The enricher continues processing once it receives a message on the reply-channel. It
adds the additional properties such as price and instrument to the message and sends
them to the output-channel.

The following snippet shows the published Price. Note that the Price does not have
any initial values set (they will be set via the PriceEnricher).

public void publishPrice() {
 //Create a Price object with no values
 Price p = new Price();

 // note the reply-channel as header property
 Message<Price> msg = MessageBuilder.withPayload(p)
 .setHeader(MessageHeaders.REPLY_CHANNEL, "reply-channel")
 .build();

 channel.send(msg, 10000);
 System.out.println("Price Message published.");
}

The PriceEnricher is given the message (via Service Activator) to enrich. We can use
any complex logic here to set the data:

public class PriceEnricher {
 public Price enrichHeader(Message m) {
 Price p = (Price)m.getPayload();
 p.setInstrument("IBM");
 p.setPrice(111.11);
 return p;
 }
}

The Enricher component follows a Gateway pattern, which is discussed in the next
section.

Gateway
If the prime requirement of your project is to write applications without requiring
knowledge of the messaging system or connecting to a messaging framework, then the
Gateway pattern is the one to use. We have previously seen some examples of sending
and receiving messages by various publishers and consumers. However, we were fetch-
ing a reference to the channels from the application context every time we wanted to
publish or consume a message. This means that our client code is tied to Framework’s
messaging components.

When you use the Gateway pattern, you will not be using any of the messaging com-
ponents, but will be dealing with a simple interface that will expose your functionality.

34 | Chapter 4: Endpoints

Essentially, there are two types of Gateways: Synchronous Gateway and Asynchronous
Gateway. In Synchronous Gateway, the message call will be blocked until the process
is completed. In Asynchronous Gateway, the message call is not blocked. More on each
gateway appears in their respective sections below.

Synchronous Gateway

The first step in writing a gateway is to define an interface that describes the interaction
methods with the messaging system. In our example, we have an ITradeGateway inter-
face with a single method processTrade. This is the only interface that will be exposed
to the client with no implementation provided.

public interface ITradeGateway {
 public Trade processTrade(Trade t);
}

The next step is to configure a gateway:

<int:gateway id="tradeGateway"
 default-request-channel="trades-in-channel"
 default-reply-channel="trades-out-channel"
 service-interface="com.madhusudhan.jsi.endpoints.gateway.ITradeGateway" />

There’s a lot happening in the backend.

When the application context is loaded with the above configuration, a gateway end-
point is created with default request and reply channels. The gateway has a service-
interface attribute which points to our ITradeGateway interface. The framework’s
GatewayProxyFactoryBean creates a proxy for this service interface (and that’s the reason
you don’t have to provide any implementation for the interface). The proxy will serve
the client’s incoming and outgoing requests using the channels provided.

So, if a client calls a processTrade method, it will be served by the proxy. It publishes
a Message with a Trade object onto the trades-in-channel. The proxy then blocks the
call until it receives a reply from the trades-out-channel. The reply is then passed back
to the client. There will be another component picking up a message from the trades-
in-channel to process the Trade accordingly.

The client code looks like this:

public GatewayEndpointTest() {
 ...
 public GatewayEndpointTest() {
 ctx = new ClassPathXmlApplicationContext("endpoints-gateway-beans.xml");
 // obtain our service interface
 tradeGateway = ctx.getBean("tradeGateway",ITradeGateway.class);
 }

 public void publishTrade(Trade t) {
 // call the method to publish the trade!
 Trade it = tradeGateway.processTrade(t);
 System.out.println("Trade Message published (Reply)."+it.getStatus());
 }

Common Endpoints | 35

 public static void main(String[] args) {
 GatewayEndpointTest test = new GatewayEndpointTest();
 Trade t = new Trade();
 test.publishTrade(t);
 }
}

We get the tradeGateway bean (which is the service interface) from the application
context and invoke the processTrade method. There is no dependency on the messaging
framework in this code. From the client’s perspective, the client is invoking a method
on a service interface.

To complete the example, we can configure a Service Activator to pick up messages
from the trades-in-channel (this is the same channel where the messages are published
by the proxy) and post the replies to the trades-out-channel (this is the same channel
where the proxy is listening for replies). The following code snippet illustrates the
Service Activator endpoint:

<int:service-activator
 input-channel="trades-in-channel"
 output-channel="trades-out-channel"
 ref="tradeProcessor"
 method="receiveTrade" >
</int:service-activator>

<bean id="tradeProcessor"
 class="com.madhusudhan.jsi.endpoints.gateway.TradeProcessor" />

The TradeProcessor is a simple class that is invoked by the Activator endpoint when a
message arrives at the trades-in-channel. It then processes the Trade and sends a reply
(via the return value):

public class TradeProcessor {
 public Trade receiveTrade(Trade t) {
 System.out.println("Received the Trade via Gateway:"+t);
 t.setStatus("PROCESSED");
 return t;
 }
}

Asynchronous Gateway

The client in the above example will be blocked until it gets a reply from the processors.
If the client’s requirement is to fire and continue, using Asynchronous Gateway is the
right choice.

In order to achieve the asynchronous behavior, the service interface is required to have
the return type changed so it now returns a Future object:

import java.util.concurrent.Future;

public interface ITradeGatewayAsync {
 public Future<Trade> processTrade(Trade t);
}

36 | Chapter 4: Endpoints

This is the only change required to make the gateway behave asynchronously. In your
client program, the processTrade will now return a reply to your message as a Future
object:

public void publishTrade(Trade t) {
 Future<Trade> f = tradeGateway.processTrade(t);
 try {
 Trade ft = f.get();
 } catch (Exception e) { .. }
}

Delayer
The Delayer endpoint is used to introduce delay between sender and receiver. This
component forces the messages to be delivered at a later time based on the configura-
tion. It will pick up a message from an input channel, apply the delay and send to the
output channel when delay expires.

The configuration is simple, as demonstrated in the following snippet:

<int:delayer default-delay="5000"
 input-channel="in-channel"
 output-channel="out-channel">
</int:delayer>

All messages arriving at the in-channel will be delivered to the out-channel after a delay
of five seconds. The messages will be delivered instantly if the default-delay is set to
zero or negative.

You can also use a header field to define the delay period for each message. In order to
do this, you need to let the framework know by using the attribute delay-header-
name as shown below:

<int:delayer default-delay="5000"
 input-channel="prices-in-channel"
 output-channel="prices-out-channel"
 delay-header-name="MSG_DELAY">
</int:delayer>

All messages which have an MSG_DELAY header attribute will have a delay set by the value
of the header field. Messages with no MSG_DELAY header attribute will have default-
delay set on them.

Spring Expressions
Spring Integration endpoints support Spring Expression Language (SpEL) definitions.
You can use the expressions to evaluate the properties on headers and payloads. For
example, if you wish to extract a header property using the expression, the following
snippet will help:

Spring Expressions | 37

<int:header-enricher id="enricher"
 input-channel="in-channel" output-channel="out-channel">

 <int:header name="TARGET_SYSTEM" expression="headers.TARGET_SYSTEM"/>
</int:header-enricher>

The headers property will have the reference to MessageHeaders, so you can query the
properties using headers.property_name syntax.

Similarly, the payload is available as the payload property, so you can query the pay
load object’s variable by using dot notation:

<int:enricher input-channel="in-channel"
 request-channel="enricher-req-channel"
 output-channel="stdout">
 <int:property name="price"
 expression="payload.price"/>
</int:enricher>

Endpoints such as Transformers, Filters, Service Activators, and Splitters support the
Spring Expressions.

Scripting Support
Spring Integration components can leverage Framework’s extensive support for script-
ing languages. You can write scripts in your favorite Framework-supported language
and invoke those scripts from its endpoints. In fact, you can use any scripting language
that implements JSR-223 (Scripting for Java Platform). Some of the languages Frame-
work supports are Groovy, Python/Jython, Ruby/JRuby, and JavaScript.

Let’s take an example of a Transformer that calls a Groovy script for transformation.
The endpoint picks up the message from the in-channel and passes it to the position-
transformer.groovy script.

<int:transformer
 input-channel="in-channel"
 output-channel="stdout">
 <int-script:script lang="groovy"
 location="/home/mkonda/justspring/jsi/position-transformer.groovy"/>
</int:transformer>

The script will have access to the MessageHeaders and Payload of the Message in its
execution context via headers and payload variables. You can also embed your script
inline as CDATA in your config file.

For the Curious: Endpoint API
Now that you have seen the basic types of consumers, you should understand where
they are really used. Under normal circumstances, you do not have to use them, as you
will be configuring them under an XML namespace. The framework provides these

38 | Chapter 4: Endpoints

components under various namespaces, so you can add the respective elements de-
claratively straight out of the box. This reduces the amount of coding and encourages
a declarative programming model.

But for now, keep in mind that Transformers, Filters, Routers, etc., are all supported
by the spring XML namespace. This means you can declaratively create an instance of
any of these flow components. For example, a transformer element is used to create a
Transformer component which will fetch messages from the input channel to kick off
the transformation.

Understanding the link between the classes and namespace elements will give us much
more command of the framework. However, you are strongly encouraged to use name-
spaces to configure these endpoints, instead of using the API classes.

Consumers
If you recall from the earlier chapter on channels, there are two types of channels: one
is pollable while the other is subscribable. Based on the same definition, we have two
types of endpoint consumers: Polling Consumer and an Event-Driven Consumer.

A PollingConsumer polls the channel for messages based on a polling configuration. It
is driven by the client program. The EventDrivenConsumer, on the other hand, subscribes
to a subscribable channel so it will be notified asynchronously when a message arrives
at the channel.

Polling Consumers

One of the characteristics of polling consumers is to poll for messages in a timely fash-
ion. Framework provides the PollingConsumer class that does this job. The class is in-
stantiated by using a constructor that takes the reference to a pollable channel and a
message handler. The message handler is a simple interface to handle the messages
published onto the channel.

The following snippet shows how to create a PollingConsumer object. You can use the
framework’s class as is, or if preferred, create a wrapper around it.

private MessageHandler positionsHandler = null;
private QueueChannel positionsChannel = null;
...

// Instantiating a PollingConsumer
PollingConsumer consumer = new PollingConsumer(positionsChannel, positionsHandler);

Let’s take an example of a custom consumer.

The PositionsPollingConsumer is a message consumer that grabs the Position messages
from the positions-channel. We know that we can use the receive method on the
channel itself to receive the message (shown in the following snippet), which has been
described in earlier chapters.

For the Curious: Endpoint API | 39

Message m = channel.receive();//or other receive methods
System.out.println("Payload: " + m.getPayload());

Instead, what we do here is create an endpoint that polls from these channels. Channels
merely act as buckets for messages, which is actually their main function.

As mentioned above, the PollingConsumer requires a channel and a handler to be in-
stantiated. The handler is created by implementing the framework’s MessageHandler:

public class PositionsHandler implements MessageHandler {
 public void handleMessage(Message<?> message) throws MessagingException {
 System.out.println("Handling a message: "+ message.getPayload().toString());
 }
}

The PollingPositionsConsumer, shown below, creates an instance of the framework’s
PollingConsumer to fetch the messages programmatically, rather than declaratively.

public class PositionsPollingConsumer {
 private PollingConsumer consumer = null;
 private PositionsHandler positionsHandler = null;

 public PositionsPollingConsumer(ApplicationContext ctx, QueueChannel
positionsChannel) {
 //instance of handler
 positionsHandler = new PositionsHandler();
 // now create the framework's consumer
 consumer = new PollingConsumer(positionsChannel, positionsHandler);
 //You must set the context, or else an error will be thrown
 consumer.setBeanFactory(ctx);
 }
 public void startConsumer() {
 consumer.start();
 }
}

Now that our consumer is coded, it’s just a matter of calling the startConsumer()
method. This method calls the start method on PollingConsumer internally:

PositionsPollingConsumer ppc = new PositionsPollingConsumer(ctx, positionsChannel);

ppc.startConsumer();

The PollingConsumer coded above does not poll—it just picks up
the messages. However, we wish to add the function of polling to the component so it
will poll in a timely fashion. This is achieved using the framework’s Triggers.

There are two types of triggers provided by the framework: PeriodicTrigger, which
polls at a fixed interval, and CronTrigger, which polls based on Unix’s cron expressions.
The CronTrigger is more flexible when the task scheduling has complex requirements.

Once an appropriate Trigger is chosen, it needs to be instantiated and wired onto the
consumer. For example, if we want to poll every two seconds, create the Peri
odicTrigger as shown below. You can also set other properties, such as initialDelay
and fixedRate, to control the polling much further.

Polling Using Triggers.

40 | Chapter 4: Endpoints

PeriodicTrigger periodicTrigger = new PeriodicTrigger(2000);
// let the polling kick in after half a second
periodicTrigger.setInitialDelay(500);
// fixed rate polling?
periodicTrigger.setFixedRate(false);

The initialDelay is set to start the polling only after the expiry of that time period. The
fixedRate is a Boolean variable that will indicate if the polling should be done on a
regular time interval. If, for whatever reason, the current message processing has taken
more than the polling period (two seconds in the above example), the poller will poll
for another message if this flag is set to true.

The CronTrigger enables the consumer to do more sophisticated polling. For example,
you have a job that wakes up at midnight on weekdays to do house clean-up. It works
on setting up cron expressions which can cater to such complex scenarios.

Cron expressions are expressed as space-separated fields. There are six such fields, each
field representing an aspect of time. Declare an expression that represents your time
requirements and pass it on to the trigger object as shown below:

// start polling all weekdays at exactly one minute past midnight
String cronExpression="* 01 00 * * MON-FRI";

cronTrigger = new CronTrigger(cronExpression);

The above cron expression allows the poller to wake one minute past midnight on all
weekdays to check. The poller checks for any messages when it wakes, processes them,
and goes back to sleep mode.

Event-Driven Consumers

The second type of endpoint consumers that subscribe rather than poll to the message
stream is categorized as Event-Driven Consumers. The framework defines this type of
consumer as an EventDrivenConsumer class. Their fundamental characteristic is that they
wait for someone (the framework’s responsibility) to deliver the message as soon as it
appears on the channel. From our earlier discussions on event messages, you know that
SubscribableChannel supports this type of consumer.

The instantiation of this consumer is exactly like that of PollingConsumer—supply a
channel to which it should subscribe to get a message stream and a handler to handle
the messages.

private EventDrivenConsumer consumer = null;
private PositionsHandler positionsHandler = null;
private ApplicationContext ctx = null;

public PositionsEventDrivenConsumer(ApplicationContext ctx,
 PublishSubscribeChannel positionsChannel) {

 positionsHandler = new PositionsHandler();

 // instantiate the event driven consumer

For the Curious: Endpoint API | 41

 consumer = new EventDrivenConsumer(positionsChannel, positionsHandler);
 consumer.setBeanFactory(ctx);

The PositionsHandler is a simple class that implements MessageHandler with providing
the handleMessage method. Starting the consumer is as simple as calling the start
method on the EventDrivenConsumer:

public void startConsumer() {
 // EventDrivenConsumer exposes start method
 consumer.start();
}

Unless you have a compelling requirement, use EventDrivenConsumer.

Summary
In this chapter, we discussed common endpoints such as Service Activator, Message
Bridge, Enricher, Gateway, and Delayer. We touched on the workings of Spring
Expressions and Scripting Support. We also looked at the fundamentals behind the
endpoint consumers. We learned about PollingConsumer and EventDrivenConsumer re-
ceivers. We looked at ways of setting up the triggers on pollable channels in a more
robust way.

42 | Chapter 4: Endpoints

CHAPTER 5

Transformers

Introduction
Not all applications understand the data they consume. Sometimes the messages need
to be transformed before they can be consumed to achieve a business purpose. For
example, a producer uses a Java Object as its payload to produce a message, while a
consumer is interested in non-Java Object types like plain XML or name-value pairs.

To help the producer and consumer communicate, transformers are used to transform
Java Object to non-Java Objects. The Spring Integration framework provides the trans-
former components that do exactly what is required. This chapter looks in detail at the
transformation endpoints provided by the framework.

First, we will discuss the transformers like Object-to-String or Object-to-Map trans-
formers, which come out of the box from the Spring Integration framework. We then
discuss the ways to create our own transformers if the built-in ones are inadequate.

Built-In Transformers
Framework provides a couple of built-in transformers so you don’t have to create them
for simple cases such as converting an Object to String, Map, or JSON formats. The
integration namespace supports these transformers.

String Transformers
Using the Object to String transformer is easy—all we have to do is define one in our
bean’s XML using the object-to-string-transformer element. The following snippet
shows the definition:

<int:object-to-string-transformer
 input-channel="in-channel"
 output-channel="stdout">
</int:object-to-string-transformer>

43

<int-stream:stdout-channel-adapter id="stdout"/>

So, any POJOs (Plain Old Java Objects) appearing in the trades-in-channel will au-
tomatically be converted to string without intervention by custom transformers. Note
that we do not provide reference to any transformer in the above config definition. In
fact, the object-to-string-transformer element will not take the ref attribute. The
payload at the receiver’s end will always be a toString() of the POJO. In the above
example, the payload is written to the stdout using the stdout-channel-adapter. So,
make sure your published POJO has overridden the toString() method, or else
you will see gibberish as your String payload (such as com.madhusud
han.jsi.domain.Trade@309ff0a8).

Map Transformers
If you need to convert the POJO to a name-value pair of Map, you can use the Object
to Map transformer. It is represented by the object-to-map-transformer element that
takes the payload from the input channel and emits a name-value paired Map object
onto the output channel.

<int:object-to-map-transformer
 input-channel="in-channel"
 output-channel="stdout">
</int:object-to-map-transformer>

<int-stream:stdout-channel-adapter id="stdout"/>

The above snippet’s output is printed to the console using the stdout-channel-
adapter as below:

{direction=BUY, account=B12D45, security=null,
 status=NEW, quantity=0, id=1234}

Conversely, the map-to-object-transformer is used to convert the name-valued pairs
of Map to a Java Object. The use of the element is shown in the snippet below:

<int:map-to-object-transformer
 input-channel="in-channel"
 output-channel="stdout">
</int:map-to-object-transformer>

Serializing and Deserializing Transformers
Readers familiar with Java Message Service (JMS) will know that the messages must be
serialized and deserialized when sent or received, respectively. The Payload Serializ
ing transformer transforms a POJO to a byte array. It is represented below by payload-
serializing-transformer:

<int:payload-serializing-transformer
 input-channel="trades-in-channel"
 output-channel="trades-out-channel">

44 | Chapter 5: Transformers

</int:payload-serializing-transformer>

When a SerializableTrade is published onto the trades-in-channel, the transformer
picks and converts the payload to bytes. The deserializing transformer is then used to
read the bytes back to SerializableTrade.

The deserializing transformer works in exactly the opposite manner as its counterpart
by deserializing the serialized payload to a POJO message. It is represented by payload-
deserializing-transformer and reads a byte array. The following snippet demonstrates
a deserializing transformer printing out the toString() of SerializableTrade onto the
console by picking up the bytes from the trades-out-channel, the output channel of
the Serializing Transformer.

<int:payload-deserializing-transformer
 input-channel="trades-out-channel"
 output-channel="stdout">

</int:payload-deserializing-transformer>

<int-stream:stdout-channel-adapter id="stdout"/>

JSON Transformers
JavaScript Object Notation (JSON) is the lightweight message data exchange format
that is completely language independent. It produces human-readable, formatted name
values. The Spring Integration framework supports automatic transformations from an
Object to JSON representation. As the name suggests, the object-to-json-trans
former transforms an Object to JSON-formatted payload.

<int:object-to-json-transformer
 input-channel="trades-in-channel"
 output-channel="stdout">
</int:object-to-json-transformer>

Using our Trade object, the expected JSON format is printed to the console:

{"id":"1234","direction":"BUY","account":"B12D45","security":null,"status":
"NEW","quantity":0}

The json-to-object-transformer acts the other way—converting the JSON formatted
payload to a Java Object. The type attribute specifies the type of object that the trans-
former needs to instantiate and populate with the input JSON data.

<int:json-to-object-transformer
 input-channel="trades-in-channel"
 output-channel="trades-out-channel"
 type="com.madhusudhan.jsi.domain.Trade">
</int:json-to-object-transformer>

Built-In Transformers | 45

XML Transformers
For those applications which use XML as the message format, the framework provides
support in converting a POJO to XML and vice versa automatically. There’s a bit more
involved than simply using an XML tag, as we see in the above built-in transformers.
If you have already worked with Spring’s Object-to-XML (OXM) framework, this sec-
tion will be easy.

Spring uses two classes to marshal and unmarshal the Object into XML and vice versa:
the org.springframework.oxm.Marshaller and the org.springframework.oxm.Unmarshal
ler. The Marshaller is used to convert an Object to an XML Stream, while the Un-
marshaller does the opposite—converting an XML stream to an Object.

You need to access the XML transformers using an XML namespace. The following
highlighted code shows the importation of another namespace in our XML file:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 ...
 xmlns:int-xml="http://www.springframework.org/schema/integration/xml"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/integration/xml
 http://www.springframework.org/schema/integration/xml/
 spring-integration-xml-2.1.xsd">
</beans>

Once you declare the namespaces, use the marshalling-transformer element to read a
message off an input channel. The message is formatted into XML and posted back to
the output channel. See the wiring of the marshalling-transformer below:

<int-xml:marshalling-transformer
 input-channel="trades-in-channel"
 output-channel="stdout"
 marshaller="marshaller"
 result-type="StringResult">

</int-xml:marshalling-transformer>

<bean id="marshaller"
 class="org.springframework.oxm.castor.CastorMarshaller" />

As expected, the marshalling-transformer picks up the messages from an input channel
and spits out an XML-formatted message onto a standard output. The noteworthy
point is the wiring of the marshaller and the result-type. The referenced marshaler is
a CastorMarshaller which is declared as a bean in the same config file.

The output of the message is printed below (note that I’ve formatted the output result
with new lines for clarity):

46 | Chapter 5: Transformers

Payload:
<?xml version="1.0" encoding="UTF-8"?>
<trade>
 <status>NEW</status>
 <account>B12D45</account>
 <direction>BUY</direction>
 <id>1234</id>
</trade>

The marshalling-transformer takes an optional result-type which decides the result
type. There are two built-in result types—javax.xml.transform.dom.DOMResult and
org.springframework.xml.transform.StringResult. The DOMResult is the default one,
meaning if you don’t provide the result-type, the output message payload will be of
the DOMResult type.

If you wish to use your own custom result-type transformer, you have the option of
providing a result-factory attribute.

<int-xml:marshalling-transformer
 input-channel="trades-in-channel-xml"
 output-channel="trades-out-channel-xml"
 marshaller="marshaller"
 result-factory="tradeResultFactory">
</int-xml:marshalling-transformer>

<bean id="tradeResultFactory"
class="com.madhusudhan.jsi.transformers.builtin.TradeResultFactory" />

The TradeResultFactory has one method to implement—createResult, inherited from
ResultFactory:

public class TradeResultFactory implements ResultFactory {

 public Result createResult(Object payload) {

 System.out.println("Creating result ->"+payload);
 //create your own implementation of Result
 return new TradeResult();
 }
}

XPath Transformers
The xpath-transformer decodes the XML payload using XPath expressions. The trans-
former expects an XML payload on an input channel and outputs the result to the
output channel after applying the XPath expression. The configuration is simple:

<int-xml:xpath-transformer
 input-channel="trades-in-channel"
 output-channel="stdout"
 xpath-expression="/trade/@status">

<int:poller fixed-rate="1000" />
</int-xml:xpath-transformer>

Built-In Transformers | 47

Create and publish the XML payload message as shown below onto the trades-in-
channel:

private String createNewTradeXml() {
 return "<trade status='NEW' account='B12D45' direction='BUY'/>";
}

The input message’s payload will be parsed for a status attribute’s value and will print
it to the console:

//publishes the status onto stdout:

NEW

Custom Transformers
Now that we have seen out-of-the-box transformers, it is time to see how we can create
our own Transformers should the need arise.

Let us look at an example of a TradePublisher that will produce Trade messages with a
Trade POJO as a payload. In the example, the consumer is not interested in receiving
a Java Object but is expecting a name-value paired map. Can we tweak the
TradePublisher to produce the Trade data compatible with that of a receiver? Yes, we
can, but what if we have another receiver that may come up a few weeks later and be
interested in consuming XML-formatted Trade messages?

Ideally, the producers should be unaware of consumers or their requirements. They
only talk via an intermediary called message. This enables the applications to be de-
coupled, too. Our TradePublisher produces the Trades in a universal format—a POJO.

Before the message hits the receiver, a transformer needs to be plugged in.

Trade Map Transformer
Because the receiver is expecting name-value pairs of the Trade data, we need to trans-
form the message into the expected format before sending to the consumer. One way
to do this is to create a class that transforms the POJO to a name-value pair. The
TradeMapTransformer class defined below satisfies this requirement:

public class TradeMapTransformer {
 public Map<String, String> transform(Trade t) {
 Map<String,String> tradeNameValuesMap = new HashMap<String,String>();

 tradeNameValuesMap.put("TRADE_ID", t.getId());
 tradeNameValuesMap.put("TRADE_ACCOUNT", t.getAccount());
 ...
 return tradeNameValuesMap;
 }
}

48 | Chapter 5: Transformers

As you can see, the TradeMapTransformer is a simple class that takes the Trade object
and creates a map of values.

Now that we have the transformer, we need to let the framework know that it should
use our class when a message appears on the input channel. The way to do this is to
declare the transformer element in your beans file and, via this element, glue the end-
point to the channel:

<int:transformer input-channel="trades-in-channel"
 output-channel="trades-out-channel" ref="tradeMapTransformer">
</int:transformer>

<bean id="tradeMapTransformer"
 class="com.madhusudhan.jsi.transformers.custom.TradeMapTransformer" />

You need to define these few bits when declaring the transformer element: an input
channel, an output channel, and of course, a transformer implementor. In the above
configuration, the transformer picks up a message that appears in the trades-in-chan
nel, transforms it into name-values, and publishes it back to the output channel,
trades-out-channel in this case, as a Map of name-values. The ref attribute refers to our
transformer class, TradeMapTransformer in this instance.

Once the message is received from the channel, the payload is extracted from it. Under
normal circumstances, the payload will be whatever the publisher has sent. However,
we have a transformer between the publisher and the consumer that transforms the
message from the POJO format to the name-value format. Hence, the payload will be
of the type returned by the transform method.

In the above case, our TradeMapTransformer returns a Map<String,String>—hence the
getPayload() method is casted to a Map.

The output of the program invokes toString() on the Map object to produce the fol-
lowing to the console:

Payload: {TRADE_DIRECTION=BUY, TRADE_ACCOUNT=B12D45, TRADE_ID=1234,
TRADE_STATUS=NEW, TRADE_SECURITY=null}
...
Payload: {TRADE_DIRECTION=BUY, TRADE_ACCOUNT=B12D45, TRADE_ID=1234,
TRADE_STATUS=NEW, TRADE_SECURITY=null}

String Transformer
The above TradeMapTransformer cannot be used if there’s a requirement to consume
Trades in a String format. There’s a simple solution to this—create a POJO-to-String
Transformer. The following snippet shows how the transformer converts a Trade object
to a String:

public class PojoToStringTransformer {
 private final String tradeString
 = "TRADE_ID=%s,
 TRADE_ACCOUNT=%s,

Custom Transformers | 49

 TRADE_SECURITY=%s,
 TRADE_DIRECTION=%s,
 TRADE_STATUS=%s" ;

 public String transform (Trade t) {
 return
 String.format(tradeString,
 t.getId(),
 t.getAccount(),
 t.getSecurity(),
 t.getDirection(),
 t.getStatus()) ;
 }
}

Next, we connect this transformer into our configuration:

<int:transformer input-channel="trades-in-channel"
 output-channel="trades-out-channel"
 ref="pojoToStringTransformer">
</int:transformer>

<bean id="pojoToStringTransformer"
 class="com.madhusudhan.jsi.transformers.custom.PojoToStringTransformer" />

The output of the executed program prints the following:

Payload: TRADE_ID=1234,TRADE_ACCOUNT=B12D45,TRADE_SECURITY=null,
TRADE_DIRECTION=BUY,TRADE_STATUS=NEW
...
Payload: TRADE_ID=1234,TRADE_ACCOUNT=B12D45,TRADE_SECURITY=null,
TRADE_DIRECTION=BUY,TRADE_STATUS=NEW

The above shows that it is easy to plug in transformers. It will also save time on writing
code when all you have to do is declare a transformer element and set a few properties.

Using Annotations
You can use Framework’s @Transformer annotation to refer to the transformer bean
from your config file. The component-scan allows the container to scan for annotated
beans in the transformers package, In this case, the AnnotatedTradeMapTransformer class
will be instantiated:

@Component
public class AnnotatedTradeMapTransformer {
 @Transformer
 public Map<String, String> transform(Trade t) {
 Map<String,String> tradeNameValuesMap =
 new HashMap<String,String>();

 return tradeNameValuesMap;
 }
}

50 | Chapter 5: Transformers

The annotated transform method is invoked when a message arrives in the in-
channel. The configuration is similar to the one we have already seen, except the com
ponent-scan tag is added. This scans for the beans decorated with @Component and cre-
ates instances of them once found in the application context container:

<context:component-scan
 base-package="com.madhusudhan.jsi.flow.transformer" />

Summary
Transformers play an important role in satisfying different clients’ requirements. They
form a vital part of creating seamless integration between the endpoints. In this chapter,
we discussed the workings of Transformers in detail. We touched on various aspects
of Transformers, including the difference between the custom and built-in transform-
ers. Finally, we explored the transformers used for transforming real word objects to
XML and vice versa.

In the next chapter, Chapter 6, we will discuss message flow components, such as
Filters, Routers, Aggregators, and Splitters.

Summary | 51

CHAPTER 6

Flow Components

Introduction
Messaging applications sometimes require additional components like routing, aggre-
gation, or sequencing. An application might have specific criteria to route messages to
multiple channels or to split the messages and later aggregate them for further
processing.

Spring Integration includes these requirements and supports them with message flow
components that include Filters, Routers, Aggregators, and Splitters. These compo-
nents do not require extra coding and can be used as is out of the box.

This chapter will discuss each of these components in detail.

Filters
Consumers have different message requirements, with some wanting one type of mes-
sage and others wanting a different type. Spring Integration Framework uses Filters and
sets up criteria to decide which applications should receive the messages and which
should not.

Let’s look at an example of Trades being published onto a trades-in-channel, which
is configured to receive all types of Trades published by producers.

This requirement can be fulfilled in two ways without using Framework.

• Create and configure NewTradeConsumer to only pick up messages with trade
Type=NEW and throw away everything else, and create and configure Cancel
TradeReceiver to only consume Trades with tradeType=CANCEL.

• Have a single receiver (e.g., TradeConsumer) that consumes all incoming messages
regardless of the type of Trade, which then invokes the appropriate processing
component based on the Trade type (e.g., by using if-else).

Although these two methods work fine, they are not ideal.

53

In both cases, most of the filtering work is done by the consumers. What happens if
we have to introduce another set of filtering conditions?

As filtering is a common task, Spring Integration’s Filters can be configured to do this
task and leave the consumers to receive their choice of messages. The framework takes
away the filtering logic from the applications and ties it in with the channels.

Using Custom Filters
Framework provides a filter namespace for declaring the filters in configuration files.
The filter element has an input channel to read the input messages, an output channel
to deliver the accepted messages, and a reference to the filter bean. In the example
below, the filter bean is a simple class that has the logic of accepting only NEW Trades:

<int:filter input-channel="in-channel"
 output-channel="out-channel"
 ref="newTradeFilter"
 method="isNewTrade">
</int:filter>

<bean id="newTradeFilter" class="com.madhusudhan.jsi.flow.ex1.NewTradeFilter" />

The rejected messages (non NEW Trades) are filtered out immediately and thrown away
by the framework. The method attribute indicates the method to be called on the New
TradeFilter class when a message is picked up by this endpoint. The only mandatory
requirement is that it must return a Boolean value. In this way, the framework can either
accept or discard the message.

The following is the implementation of the class:

public class NewTradeFilter {

 public boolean isNewTrade(Message<?> message) {
 Trade t = (Trade)message.getPayload();
 return (t.getStatus().equalsIgnoreCase("new"));
 }
}

The isNewTrade method accepts a Trade message and checks the status by calling get
Status() on the object. If the status is NEW, the method returns true, which means that
the Message is passed onto the next component, or else discarded.

You can omit declaring the method attribute from the filter configuration if your class
has just one method defined. Framework is intelligent enough to pick up the defined
single method.

There are advantages to using your own custom filters. One advantage is that you are
not tied to the framework. A bigger advantage is that you might have one filter class
catering all of your universal filtering logic.

54 | Chapter 6: Flow Components

Using Framework’s MessageSelector
You can also create Filters by implementing Framework’s MessageSelector to create a
filter bean. One mandatory requirement is to expose the accept method. This method
returns a Boolean value—if true, the message is sent to the channel, or else the message
is not forwarded. It is your logic in the accept method that does the filtering of criteria.

The following snippet is an example of the CancelTradeFilter implementing the
MessageSelector interface:

public class CancelTradeFilter implements MessageSelector{
 public boolean accept(Message<?> message) {
 Trade t = (Trade)message.getPayload();
 return (t.getStatus().equalsIgnoreCase("cancel"));
 }
}

The accept method checks every message to see if the Trade’s status is CANCEL. Wiring
the filter follows the same principle:

<int:filter input-channel="in-channel"
 output-channel="out-channel"
 ref="cancelTradeFilter">
</int:filter>

<bean id="cancelTradeFilter"
class="com.madhusudhan.jsi.flow.filters.CancelTradeFilter" />

In both cases, we have defined the custom filter bean using the ref attribute outside
the filter so it can be reused if required. However, you can also declare the filter as an
inner bean:

<int:filter input-channel="in-channel"
 output-channel="out-channel">
 <!-- Inner Bean -->
 <bean class="com.madhusudhan.jsi.flow.filters.NewTradeFilter" />
</int:filter>

The ref attribute is not required, as we have declared the filter bean inline. Note that,
because the filter is defined as an inner bean, other beans in the same application con-
text will not have access to this filter.

Using Annotations
Another way—simple and straightforward—of creating Filters is via Annotations.
Here’s an annotated version of NewTradeFilter:

@Component
public class AnnotatedNewTradeFilter {

Filters | 55

@Filter
 public boolean isTradeCancelled(Message<?> message) {
 Trade t = (Trade)message.getPayload();
 return (t.getStatus().equalsIgnoreCase("cancel"));
 }

}

The framework uses the @Filter annotation to annotate the isTradeCancelled method
shown above. The following snippet shows how the filter is configured:

<context:component-scan base-package="com.madhusudhan.jsi.flow.filter"/>

<int:filter input-channel="in-channel"
 output-channel="stdout"
 ref="annotatedNewTradeFilter" >
</int:filter>

The component-scan lets the container scan for annotated beans in the filter package,
in this case, the AnnotatedNewTradeFilter class. The annotated method
isTradeCancelled is invoked whenever an expected message arrives in the in-channel.

Discarded Messages
The filters will either accept a message or silently discard it. However, instead of dis-
carding unwanted messages, you may want to log them for further analysis. Ideally,
such messages should be quarantined for someone (e.g., a support team) to analyze.
The framework allows the filter to raise an exception or forward it to another channel
when the message doesn’t fit the filter criteria.

To raise an exception, add the throw-exception-on-rejection attribute to the filter el-
ement. This is shown as highlighted code in the following snippet:

<int:filter input-channel="all-trades-in-channel"
 output-channel="cancel-trades-out-channel"
 ref="cancelTradeFilter"
 throw-exception-on-rejection="true">
</int:filter>

Alternatively, wire a channel into the filter element to receive the discarded messages.
Use the discard-channel attribute to set the discarded channel.

<int:filter input-channel="all-trades-in-channel"
 output-channel="cancel-trades-out-channel"
 ref="cancelTradeFilter"
 discard-channel="non-cancel-trades-hospital-channel">
</int:filter>

You can then have a housekeeping task that regularly inspects the failed Trades ap-
pearing in this quarantine channel. If the message is treated, the message can be re-
played back to the Trades channel.

56 | Chapter 6: Flow Components

Routers
One of the flow requirements is to send the messages to one or more channels based
on certain criteria. A router component can be used to distribute the messages to mul-
tiple destinations. For example, the requirement is that all new Trades should be sent
to new-trades-in-channel while all amended Trades are sent to amended-trades-in-
channel. The Router component will take care of this task. The router picks up the
message from a channel and redelivers (routes) it to the relevant channel based on
payload or headers content.

There is a difference between the filters and routers. While Filter decides whether or
not the message is to be sent based on a simple Boolean test, Router forwards the
message to one or more channels based on content. There are only two options for a
message that’s being passed through a Filter—forwarded or discarded. If a filter is used,
a message may or may not appear in an output channel, whereas if a router is used, a
single message can be sent to one or more channels.

The framework provides a couple of built-in routers: PayloadTypeRouter, based on
payload content, or HeaderValueRouter, based on header values.

PayloadTypeRouter
The PayloadTypeRouter determines the routing of messages to different channels based
on the type of the payload. The router endpoint attached to an incoming channel will
evaluate the type and accordingly distribute (route) the messages to other channels
expecting that particular type. The payload-type-router element is used to plug in this
type of routing logic.

For example, you have a channel where Account and Trade messages are flowing in from
an external system, and you wish to separate them into two different channels.
Accounts should go to accounts-channel, while Trades should go to trades-channel.

In order to achieve this, wire in a payload-type-router to the incoming channel, the
all-in-channel which receives all types of messages. Next, use the mapping attribute to
set the expected type and its corresponding channel. See below for the definition of this
router:

<int:payload-type-router input-channel="all-in-channel">
 <int:mapping type="com.madhusudhan.jsi.flow.router.Trade"
 channel="trades-channel" />
 <int:mapping type="com.madhusudhan.jsi.flow.router.Account"
 channel="accounts-channel" />
</int:payload-type-router>

All the messages whose payload type is a Trade will be sent to trades-channel, while
those of the Account type are sent to accounts-out-channel. It is a simple categorization
based on payload type.

Routers | 57

HeaderValueRouter
HeaderValueRouter deduces routing logic from the message header’s properties. We
define the logic by picking up a header property using the header-name attribute, as in
the following declaration:

<int:header-value-router input-channel="all-in-channel"
 header-name="status"
 default-output-channel="no-matches-channel">
 <int:mapping value="NEW" channel="new-trades-channel" />
 <int:mapping value="CANCEL" channel="cancel-trades-channel" />
</int:header-value-router>

This is what happens: each message is checked against the incoming message’s header
property called status. If the status equals NEW, the message is pushed into new-trades-
channel. If it matches CANCEL, it is published to cancel-trades-channel.

Custom Routers
We can use implementations to write our own custom logic for routing messages. To
do so, we need to define a class that expects a message, parses the message (or header),
and accordingly returns the channel name. The BigTradeRouter shown below imple-
ments a routing logic to forward any big Trades (whose quantity is greater than one
million pounds) to a big-trades-channel.

public class BigTradeRouter {
 public String bigTrade(Message<Trade> message){
 Trade t = message.getPayload();

 // check if the trade is a big one and if it is
 // send it to a separate channel to handle them
 if(t.getQuantity() > 1000000)
 return "big-trades-channel";
 // else send a normal channel
 return "normal-trades-channel";
 }
}

Now that you have the router logic defined in your class, the next step is to wire it into
the config file:

<int:router input-channel="all-in-channel"
 ref="bigTradeRouter"
 method="bigTrade"
 default-output-channel="non-matches-channel"/>

<!-- The custom router -->
<bean id="bigTradeRouter" class="com.madhusudhan.jsi.flow.router.BigTradeRouter"/>

As you can see, there is no mapping declared in the router element. Any message coming
into the all-in-channel will be sent to BigTradeRouter to check if any of them is a big

58 | Chapter 6: Flow Components

Trade. If the condition is satisfied, the message is pushed into big-trades-channel, or
else to normal-trades-channel, as coded in the class.

Recipient List Router
Another type of router available out of the box is a statistically defined recipient’s list:
a message to channels defined in a recipient’s list.

The following snippet demonstrates a Trade message being distributed to three down-
stream channels—persistor-channel to persist all incoming Trades, trades-channel
for processing the Trades, and audit-channel for auditing purposes.

The router is set up using the recipient-list-router element in integration name-
space.

<int:recipient-list-router input-channel="all-in-channel">
 <int:recipient channel="persistor-channel"/>
 <int:recipient channel="trades-channel"/>
 <int:recipient channel="audit-channel"/>
</int:recipient-list-router>

Unqualified Messages
What happens to those messages that, for any reason, are not passed through the
specified routing logic? The framework can either throw an exception or push them to
a default channel. There’s a default-output-channel present in the router elements
which is used to publish routing logic for unqualified messages.

<int:payload-type-router
 input-channel="all-in-channel"
 default-output-channel="non-matches-channel">
 ...
</int:payload-type-router>

A resolution-required attribute set on the router acts in conjunction with the default
output channel. The property will try to resolve any MessageChannel based on the chan-
nel ID. If the resolution-required is set to true but a default-output-channel cannot
be resolved, an exception is thrown.

Routers Using Annotations
We can also create Routers using Framework’s @Router annotation. All we have to do
is decorate the appropriate method with this annotation on modified Annotated
BigTradeRouter as shown below.

@Component
public class AnnotatedBigTradeRouter {
 @Router
 public String bigTrade(Message<Trade> message) {
 Trade t = message.getPayload();

Routers | 59

 if (t.getQuantity() > 10000)
 return "big-trades-channel";
 return "trades-stdout";
 }
}

You have to wire the above bean using the ref attribute in the configuration file:

<context:component-scan
 base-package="com.madhusudhan.jsi.flow.router" />

<int:router id="annonatedRouter" input-channel="in-channel"
 default-output-channel="no-matches-channel"
 ref="annotatedBigTradeRouter">
</int:router>

Note that the return value of the above bigTrade method returns a String value of the
channel name. The return value can also return a solo MessageChannel or list of
MessageChannel references.

Splitters
Splitters are used to split a message into pieces. The message will be dissected into
smaller ones by custom logic for various consumers to act on. There are several sce-
narios for using splitters, such as splitting a large payload into smaller chunks or in-
troducing parallel processing. The Spring Integration framework provides a splitter
element into the integration namespace. The element will then refer to a splitter bean
which implements the splitting logic.

You can implement splitter in various ways: you can either implement your own
POJO with custom logic or extend Framework’s AbstractMessageSplitter abstract
class to implement the splitMessage() method. You can also use Annotations to define
one.

Using Custom Splitters
If you choose to use custom splitters, all you have to do is create a simple POJO that
implements the splitting algorithm.

Let’s take an example of an incoming message consisting of a normal Trade and some
encrypted data. The requirement is to extract this encrypted message into a different
object, EncryptedTrade. The newly created EncryptedTrade and the old (original) Trade
will be sent out to the output channel. The output channel will receive two messages,
one which is a normal Trade with no encrypted message and a second message with
the encrypted message represented by EncryptedTrade object. The preferred way to do
this is to introduce a splitter component to split the incoming message into two Trades.

Trade and EncryptedTrade both inherit from ITrade, which is a marker interface (no
methods).

60 | Chapter 6: Flow Components

The Trade object is an ITrade type object, which has a section to carry
encryptedMessage, but at this stage it’s in a String format.

public class Trade implements ITrade{
 private String encryptedMsg = null;
 ...

 public String getEncryptedMsg() {
 return encryptedMsg;
 }
 public void setEncryptedMsg(String encryptedMsg) {
 this.encryptedMsg = encryptedMsg;
 }
 ...
}

The EncryptedTrade is an ITrade type object carrying an encrypted message.

public class EncryptedTrade implements ITrade{

 private String encryptedMsg = null;

 public EncryptedTrade(String encryptedMsg) {
 this.encryptedMsg = encryptedMsg;
 }

 public String getEncryptedMsg() { ... }

 public void setEncryptedMsg(String encryptedMsg) { ... }
}

The idea is to extract the encryptedMessage string from a Trade object and construct an
EncryptedMessage (the constructor of the EncryptedMessage takes a string) object. This
is a split logic algorithm. The CustomEncryptedTradeSplitter shown below encapsulates
this logic:

public class CustomEncryptedTradeSplitter{

 public List<ITrade> splitMyMessageToTrades(Message<?> message) {
 List<ITrade> trades = new ArrayList<ITrade>();
 TradeImpl t = (TradeImpl)message.getPayload();

 //Create a new object from the payload
 EncryptedTrade et = new EncryptedTrade(t.getEncryptedMsg());
 trades.add(t);
 trades.add(et);
 System.out.println("Splitting message done, list: "+trades);
 return trades;
 }
}

Now that you have the splitter bean ready, you use the ref attribute to wire it into the
configuration. In addition, you should also mention the name of the method that
should be invoked when splitting a message.

Splitters | 61

<!-- Custom splitter -->
<int:splitter input-channel="all-in-channel"
 ref="customEncryptedMessageSplitter"
 method="splitMyMessageToTrades"
 output-channel="all-trades-out-channel">
</int:splitter>

<bean id="customEncryptedMessageSplitter"
 class="com.madhusudhan.jsi.flow.splitter.CustomEncryptedTradeSplitter" />

Using AbstractMessageSplitter
Framework provides an abstract class that needs to be extended if you intend to go this
route. The class is AbstractMessageSplitter and the method to implement is
splitMessage(Message<?> message). The modified EncryptedTradeSplitter extending
the AbstractMessageSplitter is shown below:

public class EncryptedTradeSplitter extends AbstractMessageSplitter{
 @Override
 protected Object splitMessage(Message<?> message) {

 return trades;
 }

}

Once a message is received (remember the payload of this message is an ITrade object
with encryptedMessage set) from the input channel, it is passed on to the
EncryptedTradeSplitter instance. The EncryptedTrade is constructed using the incom-
ing Trade’s encrypted message. The EncryptedTrade and Trade are then added to a list
and passed back.

Framework has now received a list of ITrades after calling the splitter. These two Trades
are then published onto the out-channel specified in the wiring configuration.

<int:splitter input-channel="in-channel"
 ref="encryptedMessageSplitter"
 output-channel="out-channel">
</int:splitter>

<bean id="encryptedMessageSplitter"
 class="com.madhusudhan.jsi.flow.splitter.EncryptedTradeSplitter" />

The ref attribute specifies the splitter bean for implementing the splitting algorithm.

Using Annotations
You can also use the @Splitter annotation to let the framework know about your an-
notated splitter bean. You should decorate the method with the @Splitter annotation
as shown in the following example:

62 | Chapter 6: Flow Components

@Component
public class AnnonatedEncryptedTradeSplitter{

 @Splitter
 public List<ITrade> splitMyMessageToTrades(Message<?> message) {
 ..
 }
}

The method returns a collection of objects, each of them wrapped in a Message as
payload.

Splitter in the Background
We know that the splitter slices the parent message into many messages depending on
our split logic. These child messages end up in the output channel. When working with
Splitters, there are various things Framework does in the background:

• Stamping with the same CORRELATION_ID on each of the child messages

• Setting a property SEQUENCE_SIZE to the number of messages the parent was split
into

• Stamping each message with a simple SEQUENCE_NUMBER

In order to understand these properties, let’s take the earlier example of the splitter.
The following is the output to the console by the receiver. It shows that it has received
both messages.

Received a message:[Payload=Trade [...][Headers={sequenceNumber=1,
 correlationId=18c9eee1-4795-4378-b70e-d236027d0c30, ..., sequenceSize=2}]

Received a message:[Payload=EncryptedTrade[...]][Headers={sequenceNumber=2,
 correlationId=18c9eee1-4795-4378-b70e-d236027d0c30, ..., sequenceSize=2}]

There are three interesting attributes to note in the above output:

1. The correlationId (represented by CORRELATION_ID header property) is the same
for both messages so that these two message are correlated (children).

2. The sequenceSize attribute represented by the SEQUENCE_SIZE header property will
indicate the number of messages that were formed out of one parent message. In
the current example, the parent message has been split into two individual mes-
sages (sequenceSize=2).

3. The sequence number is represented by sequenceNumber on the message header. In
the above output, the sequence number increases by one.

These three attributes are important when you attempt to reassemble the parent mes-
sage. This is what an Aggregator does, as explained in the next section.

Splitters | 63

Aggregators
The job of Aggregators is to assemble multiple messages to create a single parent mes-
sage. They are the opposite of splitters, since they require information to begin and end
a task. They have to maintain state for this reason. They also need to follow certain
strategies to correlate the messages and release them after they are aggregated.

This is a complex task because all the messages of a set have to arrive before the ag-
gregators can start work. Before we look at a complicated aggregation task, let’s con-
sider a simple task based on default correlation and release strategies.

The TradeAggregator defined below is a simple aggregator whose job is to aggregate the
incoming child Trades into a parent Trade.

public class TradeAggregator {

 public ITrade aggregateTrade(List<ITrade> childTrades) {
 ...
 }
}

This aggregator is declared using the following metadata:

<int:aggregator input-channel="in-channel"
 output-channel="agg-channel"
 ref="tradeAggregator"
 method="aggregateTrade">
</int:aggregator>

<bean id="tradeAggregator"
 class="com.madhusudhan.jsi.flow.aggregator.TradeAggregator" />

<!-- Splitter that would cut the messages for aggregator to re-build -->
<int:splitter input-channel="in-channel" ref="customSplitter"
 output-channel="out-channel">
 </int:splitter>
 <bean id="customSplitter"
 class="com.madhusudhan.jsi.flow.splitter.CustomEncryptedTradeSplitter" />

The ref and method attributes define a specific method on the POJO to be invoked
whenever the release strategy is fulfilled. If the method is undefined, then the default
release and correlation strategies are applied, as in the above case.

A splitter is added to the configuration so the incoming Trade is split into two child
Trades and sent to the aggregator for rebuilding.

Strategies
The Aggregators do not work in isolation. They are paired with a couple of algorithms
called strategies, which are very important for the way aggregators behave.

64 | Chapter 6: Flow Components

Let’s take a case where a parent message is sliced (using a splitter) into a large number
of child messages. The downstream aggregator needs to wait for these messages to
arrive before it can produce the parent message again. It is the responsibility of the
Aggregator to wait for all the messages to arrive before it begins its work, hence the
complexity of its task.

There are certain algorithms that an aggregator follows in order to begin or end its
work. These algorithms are provided to the aggregators as the correlation and release
strategies.

The way to keep track of the influx of messages and aggregate them is by employing
these strategies.

Correlation Strategy
This strategy defines the key for the grouping of the messages. The default grouping is
based on the CORRELATION_ID message. Thus, all the messages with the same CORRELA
TION_ID will be stored in a separate bucket for aggregation.

The framework provides a HeaderAttributeCorrelationStrategy out of the box. You
can also implement your own strategy, either by implementing the CorrelationStrat
egy interface or creating your own POJO. In the former case, you have to implement
the getCorrelationKey() method that will return the key as shown below:

public class MyCorrelationStrategy implements CorrelationStrategy {

 public Object getCorrelationKey(Message<?> message) {
 // implement your own correlation key here
 // return ..
 }
}

Wire this strategy into your configuration using the correlation-strategy attribute:

<int:aggregator input-channel="all-trades-out-channel"
 output-channel="agg-channel"
 ref="tradeAggregator"
 method="aggregateTrade"
 correlation-strategy="myCorrelationStrategy">
</int:aggregator>

<bean id="myCorrelationStrategy"
 class="com.madhusudhan.jsi.flow.aggregator.MyCorrelationStrategy" />

If you do not wish to implement a CorrelationStrategy but have your own class (a
POJO, for instance), then you have to identify the method name in the metadata
definition:

<int:aggregator input-channel="all-trades-out-channel"
 ...
 correlation-strategy="myCorrelationStrategy"

Aggregators | 65

 correlation-strategy-method="fetchCorrelationKey">
</int:aggregator>

The only requirement is that your aggregator’s method should expect a Message<?> and
return an Object.

Release Strategy
The release strategy of an aggregator dictates at which point the collected messages
should be sent or released for aggregation. Until and unless the signal is sent, the
framework stores the messages, except when a release-on-expire flag is set.

The default strategy is represented by SequenceSizeReleaseStrategy, which implements
a ReleaseStrategy interface. It works on the algorithm that checks the presence of
messages grouped by SEQUENCE_SIZE. For example, if the SEQUENCE_SIZE is 10, the
strategy will trigger a signal to the aggregator to begin only after it receives all 10 mes-
sages with sequence numbers ranging from 1 to 10.

Similar to CorrelationStrategy, you can either implement the framework’s
ReleaseStrategy or create your own custom class that can signal the release. The fol-
lowing code implements Framework’s interface:

public class MyReleaseStrategy implements ReleaseStrategy {
 public boolean canRelease(MessageGroup group) {
 // implement your strategy here
 return false;
 }
}

The final step is to wire the strategy to the aggregator element:

<int:aggregator input-channel="in-channel"
 output-channel="agg-channel"
 ref="tradeAggregator" method="aggregateTrade"
 correlation-strategy="myCorrelationStrategy"
 correlation-strategy-method="fetchCorrelationKey"
 release-strategy="myReleaseStrategy">
</int:aggregator>

<bean id="myReleaseStrategy"
 class="com.madhusudhan.jsi.flow.aggregator.MyReleaseStrategy" />

If you write your own implementation without locking into Framework’s API, then the
method should expect a java.util.List Object returning a Boolean value. You need
to wire the bean using the release-strategy and release-strategy-method attributes:

<int:aggregator input-channel="in-channel"
 ...
 release-strategy="myReleaseStrategy"
 release-strategy-method="signalRelease">
</int:aggregator>

66 | Chapter 6: Flow Components

Message Store
Aggregators hold onto the messages until all of them have arrived. The messages cannot
be released for aggregation if even one has not arrived (unless you set an expiry on the
storage time). This means that having a place to store the messages is important for the
aggregators to work.

The framework provides an option for setting a message store on aggregators. This
store is used to keep the flowing messages grouped until a release signal or expiry time
occurs.

There are two storage options: in-memory or external database.

The in-memory is the default storage which uses a simple java.util.Map to collect the
messages in the application’s memory. As an application’s memory may be limited,
care should be taken if this facility is used to store messages. Messages can also be lost
if they are not backed up to a durable storage area in case the application crashes.

The second option is to use a database. The external location of the database should
protect any loss of messages if the application crashes.

The framework provides a message-store attribute to refer to an appropriate message
store. However, if the default message store is an in-memory one, you do not have to
declare this attribute at all.

Should you wish to wire in a database store, use the following:

<int:aggregator input-channel="all-trades-out-channel"
 output-channel="agg-channel"

 message-store="mySqlStore">
</int:aggregator>

<bean id="mySqlStore" class="org.springframework.integration.jdbc.JdbcMessageStore">
 <property name="dataSource" ref="mySqlDataSource"/>
</bean>

The mySqlStore refers to Framework’s JdbcMessageStore, to which a database should
be wired.

Resequencers
An important characteristic of a messaging system is the order of the messages. Al-
though in some cases, the ordering defeats the performance, it is sometimes mandated
by some applications. For example, when a message publisher comes back after a crash,
the replay of the messages should appear in an orderly fashion.

The Resequencer component has the ability to order the incoming messages. For ex-
ample, if 10 messages are published to a channel but in the wrong order, the consumer

Resequencers | 67

plugged in after the Resequencer does its work will receive all of them in a predefined
sequence, e.g., message 1, message 2, etc.

The Resequencers work on the SEQUENCE_NUMBER header field to track the sequences.
Say a message numbered 8 (out of 10 child messages) is the first to arrive; the Rese-
quencer does not publish this message, since message number 1 (the first SEQUENCE_NUM
BER) or messages numbered 2 through 7 have not arrived. Message 8 (along with any
other out-of-order messages) is hence stored either in-memory or in the database until
the entire set has arrived and is reordered. The exception is if you set a release-partial-
sequences flag to true, which would publish the sequences as soon as they are gathered,
rather than waiting for the whole group.

The resequencer element in the integration namespace is used to define a Resequencer
as shown in the following snippet:

<int:resequencer input-channel="all-in-reseq-channel"
 output-channel="reseq-channel"
 release-partial-sequences="true">
</int:resequencer>

Summary
The messaging flow components are critical to design any business flow. This chapter
discussed such components in detail. The Filters are the endpoints that allow or dis-
allow messages based on a set of predefined criteria. Routers mainly distribute the
messages based on a routing algorithm. The rest of the chapter described another set
of flow components consisting of Splitters, Aggregators, and Resequencers. Splitters
mainly slice the message stream into smaller pieces, while the Aggregators reassemble
them back into the original message. The Resequencer waits for a set of messages to
arrive and, if necessary, reorders them before they are reassembled.

68 | Chapter 6: Flow Components

CHAPTER 7

Adapters

Introduction
Using messaging as a medium to integrate with external systems can often be a chal-
lenging task. There are various issues to consider, including the complexity of connec-
tion mechanisms and the transformation of the message formats produced by different
systems. In addition, organizations usually have disparate system interactions, e.g.,
booking trades against external brokers, fetching data files from an intra-site file sys-
tems, consuming messages from an external JMS, or posting a company CEO’s feed to
Twitter. You will need to write integration adapters, either developing them in-house
or buying them off the shelf.

As these are common organizational requirements, the ideal solution would be an open-
source framework that can be extended or configured according to the needs of an
individual or an organization. Spring Integration is this ideal framework that provides
many adapters out of the box.

All adapters are very similar—working as inbound and outbound adapters. Inbound
adapters fetch files or database resultsets. Outbound adapters do the opposite, taking
the messages off the channels and converting them to files, then transferring them onto
a file system or database record to persist them to the database.

The fundamentals are explained in the first section—File Adapters. The other adapters
work in similar ways, except for differences related to underlying resources where the
artifacts are picked up or published to.

File Adapters
File Adapters fetch or copy files to and from different file systems. They pick a file from
a file system and turn into Framework’s Message to publish onto a channel and vice
versa. Framework supports a declarative model using file namespace. It also provides
a few classes for reading and writing files, but using namespace is advised.

69

Using Namespace
The file namespace provides the respective elements to create the objects declaratively
and easily. In order to use the file namespace, you should add the respective schema
urls to your XML file, highlighted in bold below:

<?xml version="1.0" encoding="UTF-8"?>
 <beans

 xmlns:file="http://www.springframework.org/schema/integration/file"
 xsi:schemaLocation=
 http://www.springframework.org/schema/integration/file
 http://www.springframework.org/schema/integration/file/spring-integration-
file-2.1.xsd">
 ...
</beans>

Framework provides two adapters to read and write the files. The inbound-channel-
adapter element is used for reading the files and publishing them onto a channel as
File payload messages. The outbound-channel-adapter is used for picking up the
File payload messages from a channel, extracting them as files, and writing them to
the file systems.

Inbound File Adapter

The following snippet demonstrates the inbound adapter:

<!-- Adapter using namespace -->
<file:inbound-channel-adapter id="fileAdapter"
 directory="/Users/mkonda/dev/ws/" channel="files-out-channel">

 <int:poller fixed-rate="1000" />
</file:inbound-channel-adapter>

The endpoint picks up the files from the given directory and publishes them as
Message<File> messages onto a files-out-channel indicated by the channel attribute.
The poller will indicate the rate at which the files should be polled (one second in the
above example).

For simplicity’s sake, wire in a stdout-channel-adapter that will pick up the messages
from files-out-channel and print them to the console:

<int-stream:stdout-channel-adapter
 id="files-out-channel" />

File Adapter Settings

There are some settings that the file adapters can take.

A file reader should have the flexibility to pick up a predefined
set of files instead of reading all of them from the directory. This requirement is satisfied
by the filters that we set in the adapters. The prevent-duplicates is a simple tag that
lets the reader fetch only files that were not picked up in the earlier runs. Note that this

Preventing Duplicate Files.

70 | Chapter 7: Adapters

will only be true per session, as the reader does not hold state. If the reader restarts, it
will redeliver the same files.

<file:inbound-channel-adapter id="fileAdapter"
 directory="/Users/mkonda/dev/ws/"
 channel="files-out-channel"
 prevent-duplicates="true">

 <int:poller fixed-rate="1000" />
</file:inbound-channel-adapter>

Filtering is done by using an implementation of the FileListFilter interface.
Framework has a class named AcceptOnceFileListFilter which accepts the file only
once in the current session and thus prevents duplicate fetching.

If you need to customize the filtering further, you must implement FileListFilter:

public class PositionsFilter implements FileListFilter<Position> {
 public List<Position> filterFiles(Position[] files) {
 List<Position> filteredList = new ArrayList<Position>();
 // implement your filtering logic here
 return filteredList;
 }
}

In addition to preventing duplicates, you can set up filters using the filename-
pattern and filename-regex attributes.

<file:inbound-channel-adapter id="positionsAdapter"
 ...
 filename-pattern="*.pos">
 ...
</file:inbound-channel-adapter>

The above adapter fetches only files that have the pos extension. If you wish to fetch
the files based on a regular expression, use the filename-regex attribute as shown
below:

<file:inbound-channel-adapter id="positionsAdapter"
 directory="/Users/mkonda/dev/ws/"
 ...
 filename-regex="[ABC]_positions.pos">
</file:inbound-channel-adapter>

The adapter fetches only files that start with A, B, or C and have a pos extension. Other
files will be ignored.

You can also lock files so that other processes will not read the same file as
you. You can use Framework’s FileLocker implementation with the nio-locker
attribute:

<file:inbound-channel-adapter id="positionsAdapter"
 directory="/Users/mkonda/dev/ws/" channel="positions-files-channel"
 prevent-duplicates="true" filename-regex="[ABC]_positions.pos">

 <file:nio-locker/>

Filters.

File Locks.

File Adapters | 71

 <int:poller fixed-rate="1000" />
</file:inbound-channel-adapter>

You can also throw in your own customized locker:

<file:inbound-channel-adapter id="positionsAdapter"
 directory="/Users/mkonda/dev/ws/" channel="positions-files-channel"
 prevent-duplicates="true" filename-regex="[ABC]_positions.pos">
 <!-- use custom locker -->
 <file:locker ref="positionsLocker"/>
 <int:poller fixed-rate="1000" />
</file:inbound-channel-adapter>

<bean id="positionsLocker"
 class="com.madhusudhan.jsi.adapters.PositionsFileLocker"/>

The positionsLocker refers to the custom class PositionsFileLocker that implements
the FileLocker interface.

Standalone File Readers
If you have chosen not to use the declarative model, then you may choose to use
Framework’s classes. The file reader is represented by the FileReadingMessageSource
class. It implements Framework’s MessageSource interface with one method:
receive(). This is a base interface implemented by all the sources that require polling
for messages. The return value is a Message object with java.io.File as a payload.

The FileReadingMessageSource can be used as a simple bean to read the files as mes-
sages. The StandaloneFileAdapterTest below shows such a case. All you have to do is
to instantiate the class and set a few properties, such as the directory in which you can
find the files.

public class StandaloneFileAdapterTest {
 // set the directory from where the files need to be picked up
 File directory = new File("/Users/mkonda/dev/ws");

 public void startStandaloneAdatper() {
 FileReadingMessageSource src = new FileReadingMessageSource();
 src.setDirectory(directory);
 Message<File> msg = src.receive();
 System.out.println("Received:"+msg);
 }

 public static void main(String[] args) {
 StandaloneFileAdapterTest test = new StandaloneFileAdapterTest();
 test.startAdatper();
 }
}

The receive method produces a Message with the File as a payload. You can also create
the class as a bean declaratively in an XML file instead of coupling the bean in your
source code. We have declared the FileReadingMessageSource in the following file:

72 | Chapter 7: Adapters

// declaring the framework's class as a bean
<bean id="positionsReader"
 class="org.springframework.integration.file.FileReadingMessageSource">
 <property name="directory" value="/Users/mkonda/dev/ws/" />
</bean>

Execute the application so the context loads the bean by reading the above XML file.
Use the context API to get the bean instance and invoke the receive method. This is
shown below:

private void startAdapterUsingDeclaredBeanRef() {
 ctx = new ClassPathXmlApplicationContext(
 "adapters-file-beans.xml");
 fileReader = ctx.getBean("fileReader", FileReadingMessageSource.class);

 // now you got the instance, poll for msgs
 Message<File> msg = fileReader.receive();
 System.out.println("Message received from the bean:" + msg);
}

The missing piece is to create a publisher so that all of the file messages are published
onto a channel. This is not done by FileReadingMessageSource and we need to look for
an alternative to create a standard publisher.

Outbound Adapters
The fileWriter adapter’s job is to consume messages from a channel and write them
to a file system. The framework provides classes that you can instantiate as normal Java
Objects or write as beans in your XML config file. Alternatively, you can use the
outbound-channel-adapter element in file namespace for declaring the adapter entirely
in an XML config file.

You can use namespace’s outbound-channel-adapter element to set up an outbound file
adapter:

<file:outbound-channel-adapter
 directory="/Users/mkonda/dev/ws/tmp"
 channel="positions-file-channel"/>

The adapter receives the messages from the positions-file-channel and writes them
to the filesystem directory defined by the directory attribute.

The following setup creates an inbound adapter which fetches the files from a prede-
fined directory and publishes them onto an output channel. The outbound adapter
then consumes these messages from the same channel and writes them to a different
directory. The whole execution just requires the following lines in the XML file:

<file:inbound-channel-adapter id="inAdapter"
 directory="/Users/mkonda/dev/ws/"
 channel="file-channel">
 <int:poller fixed-rate="1000"/>
</file:inbound-channel-adapter>

File Adapters | 73

<file:outbound-channel-adapter id="outAdapter"
 channel="file-channel"
 directory="/Users/mkonda/dev/ws/tmp"/>

Standalone File Adapters
Using standalone class is straightforward: instantiate the FileWritingMessageHandler
with a directory location where the files will be written. The code snippet is shown
below:

 // set the directory
 File directory = new File("/Users/mkonda/dev/ws/tmp");
 ..
 private void startStandaloneWriter() {

 // fetch the channel for incoming feed
 outChannel = ctx.getBean("files-channel",
 PublishSubscribeChannel.class);

 handler = new FileWritingMessageHandler(directory);
 // subscribe to the incoming feed
 outChannel.subscribe(handler);
}

You have to submit this handler to the channel so messages will be passed onto this
event handler.

FTP Adapters
Remote files are usually fetched by employing the File Transfer Protocol (FTP), while
local files are transferred onto a remote server using the same FTP. These two tasks are
supported by the framework using inbound and outbound channel adapters.

The inbound channel adapters connect to an FTP Server to fetch the remote files and
pass them as messages with the current file (Message<File>) as payload. The outbound
channel adapters act in the opposite direction: they connect to channels, consume the
messages, and write them to remote server directories.

Both adapters, represented by inbound-channel-adapter and outbound-channel-
adapter, are included in the ftp namespace support. Before setting up the adapters, one
critical piece of information is required by the adapters: connection (or session) details.

Session Factory
The adapters should know the server details to connect to, including the username and
password. Framework’s DefaultFtpSessionConnectionFactory class provides these de-
tails. You should declare this bean in your config file with the appropriate properties
set. The bean reference is then provided to the adapters as a session-factory attribute.

74 | Chapter 7: Adapters

First, let’s see how we can set up a session factory. In your XML file, declare the factory
class and provide the necessary details:

<bean name="sessionFactory"
 class="org.springframework.integration.ftp.session.DefaultFtpSessionFactory">
 <property name="host" value="ftp.madhusudhan.com"/>
 <property name="username" value="jsi"/>
 <property name="password" value="******"/>
 ...
</bean>

Once you have the connection factory declared, the next step is to wire the factory to
the adapters. Note that you can read the properties from a file instead of hard-coding
them using the Property placeholders.

Inbound FTP Adapters
Inbound FTP Adapters connect to a remote server using the connection factory and
poll for files on the remote file system. If a file is found, it will be consumed by the
component and a message with File as the payload (Message<File>) will be created.
This message is then sent to the channel to be collected further processing.

First, you have to add the necessary schema definitions to your XML file:

<?xml version="1.0" encoding="UTF-8"?>
 <beans

 xmlns:ftp="http://www.springframework.org/schema/integration/ftp"
 xsi:schemaLocation=
 "http://www.springframework.org/schema/integration/ftp
 http://www.springframework.org/schema/integration/ftp/spring-integration-
ftp-2.1.xsd
 ">
 </beans>

The inbound-channel-adapter in the ftp namespace is used to configure the adapter:

<ftp:inbound-channel-adapter channel="positions-channel"
 session-factory="sessionFactory"
 remote-directory="/feeds/systems/positions/"
 local-directory="/feeds/in/positions/">

 <int:poller fixed-rate="1000"/>
</ftp:inbound-channel-adapter>

<bean name="sessionFactory"
 class="org.springframework.integration.ftp.session.DefaultFtpSessionFactory">
...
</bean>

The component will use the session factory to connect to the remote server, pick up
files from the remote-directory, and publish them to the channel. You can set proper-
ties such as filename-pattern, filename-regex, and others according to the applica-
tion’s need.

FTP Adapters | 75

The presence of local-directory in the adapter config might have raised a question in
your mind. When the adapter starts polling, before it even gets the remote files, it looks
for the files under local-directory and publishes those files as Messages. Once all the
local files are published, then the remote files are polled and transferred.

You can also use your own filter classes by setting the bean on the filter attribute, e.g.
filter="myPositionsFtpFilter". The filtering was discussed in the File Adapters section
and the same principle also applies to FTP adapters.

Outbound FTP Adapters
The outbound-channel-adapter element is used to create an endpoint for publishing the
messages onto a remote file system using the FTP:

<ftp:outbound-channel-adapter channel="positions-channel"
 remote-directory="/feeds/systems/positions/"
 session-factory="connectionFactory">

 <int:poller fixed-rate="1000" />
</ftp:outbound-channel-adapter>

It requires a session factory that holds the server details. The messages are consumed
from positions-channel and written to the /feeds/systems/positions remote directory.

Caching Sessions

The framework creates a pool of FTP sessions on both the inbound and outbound
channel adapters to optimize the network calls. You can tweak the cache-sessions by
setting it to false so that the sessions are not cached and pooled. By default, this setting
is true, that is, the sessions are always cached.

<ftp:outbound-channel-adapter channel="positions-channel"
 cache-sessions="false"
 ...
</ftp:outbound-channel-adapter>

JMS Adapters
The Spring Integration framework provides good support for integrating Spring appli-
cations with Java Messaging Service (JMS).

If you are new to JMS, I would recommend reading my Just Spring book that explains
the concepts of JMS at a high level.

The framework provides inbound and outbound adapters for receiving and sending
messages across to external messaging systems. The inbound adapters will pick up a
message from a JMS destination (topic or queue) and publish them onto local channels.
On the other hand, the outbound adapters will convert a local payload from a channel
into JMS Message and publish to a JMS destination (topic or queue).

76 | Chapter 7: Adapters

The jms namespace defines the relevant elements to use these adapters declaratively.

Inbound Adapters: Receiving Messages
Receiving messages from a messaging system may involve some complexity. This is due
to the fact that the consumption might be driven by the consumer client or by the
provider. In the former case, the client will have to poll for messages on a regular basis,
while the latter case ensures that the client is given a message when it arrives on a server
(hence message-driven or event-driven).

Synchronous Consumers

As explained, the inbound-channel-adapter is responsible for receiving messages from
a JMS Server. The endpoint is configured to connect to a JMS Server, fetch the messages,
and publish them onto a local channel. Note that this is a polling consumer. In the
backend, it uses the JmsTemplate's receive method to poll for messages. You can either
provide an instance of JmsTemplate or provide connectionFactory and destination
together.

Here are the basic settings for the inbound adapter:

<jms:inbound-channel-adapter id="positionsJmsAdapter"
 connection-factory="connectionFactory"
 destination="positionsQueue"
 channel="positions-channel">
 <int:poller fixed-rate="1000" />
</jms:inbound-channel-adapter>

<!-- destination on ActiveMQ -->
<bean id="positionsQueue" class="org.apache.activemq.command.ActiveMQQueue">
 <constructor-arg value="POSITIONS_QUEUE" />
</bean>

<!-- connection factory for ActiveMQ -->
<bean name="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL">
 <value>tcp://localhost:61616</value>
 </property>
</bean>

The connection factory encapsulates the details required to connect to an external JMS
Provider. This is defined simply as a bean and wired into the adapter using a connection-
factory attribute. If the name of the bean is already connectionFactory, you don’t have
to declare this attribute because the adapter defaults to wire a bean named connection
Factory. I am using ActiveMQ as the provider and hence the brokerURL points to my
local ActiveMQ server.

The second thing to note is the destination. This is a JMS Destination object which is
basically a Queue in terms of JMS terminology. The adapter connects to the localhost

JMS Adapters | 77

ActiveMQ server, checks the POSITIONS_QUEUE, fetches any messages it finds, and pub-
lishes to the local application’s channel, positions-channel.

Message-Driven Consumers

The second type of consumer is driven by the server based on subscriptions to the
channels. The message-driven-channel-adapter element represents this type of con-
sumer. The consumer expects an instance of a Spring MessageListener container or a
combination of connectionFactory and destination. The following snippet shows the
basic settings:

<!-- Event Driven consumer-->
<jms:message-driven-channel-adapter id="msgDrivenPositionsAdapter"
 connection-factory="connectionFactory"
 destination="positionsQueue"
 channel="positions-channel">
</jms:message-driven-channel-adapter>

The connection factory and destination beans remain the same. However, we have not
provided a poller because it is an event-based consumer.

There’s a bit of conversion required to transform a Spring’s object to JMS Message type
and vice versa. The extract-payload attribute is used to transform the payloads, dis-
cussed in the next section.

Payload Conversions

When the message is published onto our local channels, what is the type of that pay-
load? How is it constructed? This depends on the converters being used. We use con-
verters to extract the body of a JMS Message and set it as payload onto a local (non-JMS)
message. The default converter used by the framework is SimpleMessageConverter,
which converts the body to its respective payload. If the JMS Message is a TextMes
sage, the body is wrapped as String message, and if it’s a ByteMessage, it is converted
to bytes, etc.

One more thing to note: the conversion begins only when the attribute extract-pay
load is set to true. By default, it is set to true (so conversions do happen automatically
if you don’t provide this flag). However, if you switch off this flag, then the JMS
Message is sent along with the payload.

You can provide a custom converter by adding a tag called message-converter, which
points to your customized bean:

<jms:message-driven-channel-adapter
 id="msgDrivenPositionsAdapter"
 ...
 message-converter="positionsConverter">
</jms:message-driven-channel-adapter>
<bean id="positionsConverter"
 class="com.madhusudhan.jsi.adapters.jms.PositionsConverter">

78 | Chapter 7: Adapters

Publishing Messages: Outbound Adapters
The outbound adapter’s duty is to fetch messages from the channel and publish them
to JMS Queue or Topic. The outbound-channel-adapter element is used to create an
endpoint that will perform this activity:

<jms:outbound-channel-adapter channel="positions-channel"
 connection-factory="connectionFactory"
 destination="positionsQueue">
 <int:poller fixed-rate="1000"/>
</jms:outbound-channel-adapter>

The underlying class being used for this function is JmsSendingMessageHandler. In the
above snippet, you can see how the channel messages are taken by the adapter and
published onto positionsQueue, which is a JMS Queue.

The extract-payload is the reverse. When set to true, the adapter will convert the
channel’s payload as equivalent to a JMS Message body. For example, a String payload
is extracted as TextMessage, and so on.

JDBC Adapters
Following the same scheme of inbound and outbound adapters, the framework’s JDBC
adapters don’t do anything different. The inbound adapter extracts the data from
Database and passes the resultset as a Message onto the local channels. The outbound
adapter persists the data records into Database by reading off the channel. The jdbc
name-support provides the relevant elements for creating the respective adapters.

It would be ideal if you were familiar with JDBC and especially Spring Framework’s
support. JDBC discusses things about JdbcTemplate, Row Mapping strategies, etc.,
which will be useful for understanding the adapters outlined below.

You can read my other book, Just Spring, for a basic primer on these concepts.

Inbound JDBC Adapters
It is the responsibility of inbound adapters to read a data set and convert them to
messages. The inbound-channel-adapter is used to create an endpoint of this sort. The
adapter is provided with a SQL query and a channel to post the messages. It is also
given an instance of Datasource, which will provide the relevant database connection
details. You can also provide the JdbcTemplate.

See the basic setup here:

<jdbc:inbound-channel-adapter channel="resultset-channel"
 data-source="mySqlDatasource"
 query="SELECT * FROM ACCOUNTS A
 where A.STATUS='NEW' and POLLED='N'">
 <int:poller fixed-rate="1000"/>
</jdbc:inbound-channel-adapter>

JDBC Adapters | 79

http://oreil.ly/just-spring

The above adapter connects to the Database identified by the data source. It then uses
the query attribute to execute the query and fetches the results that match the criteria.
Currently it is running a query on the ACCOUNTS table to fetch only non-polled records
and accounts whose status is NEW. These records are then transformed into Framework’s
Message and published onto resultset-channel.

The whole result set is converted into a single message with a payload of List records.
The type of the records depends on your row mapping strategy.

In the above configuration, you can see that we have provided a poller which sends the
adapter to the database every one second to fetch the records.

Sometimes, we may not wish to include the same list of records extracted from one poll
in the next poll. In order to exclude the already polled records, Framework provides
an update statement to be attached to the poll. That is, every time we poll, we update
the record with the setting specified in the select query so the select query will not fetch
those updated records.

For example, we only wish to query with newly created Account records. So, what we
can do is update a column (of course, it should be part of the table) called POLLED.

<jdbc:inbound-channel-adapter channel="resultset-channel"
 data-source="mySqlDatasource"
 query="SELECT * FROM ACCOUNTS A where A.STATUS='NEW' and POLLED='N'"
 update="UPDATE ACCONTS set POLLED='Y' where ACCOUNT_ID in (:ACCOUNT_ID)">
 <int:poller fixed-rate="1000" />
</jdbc:inbound-channel-adapter>

The convention followed in the update is that the values that the select query finds are
passed as parameters to the update statement using a colon (:).

Outbound JDBC Adapters
The outbound JDBC adapters are used to execute SQL queries in the database. The
SQL query is constructed with the appropriate value fetched from the incoming
Message. So, the outbound adapter listens on a message channel, picks up a message,
extracts the relevant values, constructs the query and executes the query on the
Database.

Let’s look at an example where every Trade message appearing on a trade-persistence-
channel should be persisted. Under normal circumstances, we could have written a
consumer that picks up each message and then uses persistence mechanics to store the
message in the database. However, Spring Integration’s outbound adapter saves you
from writing this extra code.

All we have to do is configure an outbound adapter with the relevant details. The
following snippet demonstrates this:

<jdbc:outbound-channel-adapter
 channel="trades-persistence-channel"
 data-source="mySqlDatasource"

80 | Chapter 7: Adapters

 query="insert into TRADE t(ID,ACCOUNT,INSTRUMENT)
 values(:payload[TRADE_ID], :payload[TRADE_ACCOUNT],
 :payload[TRADE_INSTRUMENT])">
</jdbc:outbound-channel-adapter>

The interesting point from the above snippet is the query. The query can be formulated
using the payload key tags. That is, the incoming message will have a payload of Map
type from which the map is queried using ID, ACCOUNT, etc. You can also use header’s
Map values:

 qyery="insert into TRADE t(ID,ACCOUNT,INSTRUMENT,EXPIRY)
 values(:payload[TRADE_ID], :payload[TRADE_ACCOUNT],
 :payload[TRADE_INSTRUMENT], :headers[EXPIRY])">

The Map message is created as shown below:

public Message<Map<String, Object>> createTradeMessage(){
 Map<String, Object> tradeMap = new HashMap<String, Object>();
 tradeMap.put("ID", "1929303d");
 tradeMap.put("ACCOUNT", "ACC12345");
 //..
 // Create a Msg using MessageBuilder
 Message<Map<String, Object>> tradeMsg =
 MessageBuilder.withPayload(tradeMap).build();

 return tradeMsg;
}

Once this message is sent to the persistence-channel, it will be consumed by the
adapter and the query automatically executed on the Database.

Summary
This chapter laid out the foundations on the fundamentals of integration adapters. It
discussed major adapters such as File, FTP, JDBC, and JMS adapters. We have seen a
common characteristic across the adapters—inbound adapters will get the data from
the sources and publish them onto the local channels, while outbound adapters read
the messages off the channels and push them onto the source systems.

Summary | 81

About the Author
Madhusudhan Konda is an experienced Java consultant working in London, primar-
ily with investment banks and financial organizations. Having worked in Enterprise
and core Java for the last 12 years, his interests lie in distributed, multi-threaded, n-tier
scalable, and extensible architectures. He is experienced in designing and developing
high-frequency and low-latency application architectures. He enjoys writing technical
papers and is interested in mentoring.

	Table of Contents
	Foreword
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Integration Fundamentals
	Introduction
	Integration Strategies
	Messaging Patterns
	Traditional Programming Model

	Standalone Messaging Model
	Summary

	Chapter 2. Basics
	Introduction
	Messages
	Dissecting a Message
	Generic Implementation

	Message Channels
	Declaring Channels

	Endpoints
	Service Activator Endpoint Example
	Example

	Summary

	Chapter 3. Message Channels
	Introduction
	Message Channels
	Receiving Messages
	Point-to-Point Mode
	P2P Example
	Pub/Sub Mode
	Pub/Sub Example

	Queue Channel
	Priority Channel
	Rendezvous Channel
	PublishSubscribe Channel
	Direct Channel
	Executor Channel
	Null Channel

	Summary

	Chapter 4. Endpoints
	Introduction
	Common Endpoints
	Service Activator
	Message Bridge
	Message Enricher
	Header Enricher
	Payload Enricher

	Gateway
	Synchronous Gateway
	Asynchronous Gateway

	Delayer

	Spring Expressions
	Scripting Support
	For the Curious: Endpoint API
	Consumers
	Polling Consumers
	Polling Using Triggers

	Event-Driven Consumers

	Summary

	Chapter 5. Transformers
	Introduction
	Built-In Transformers
	String Transformers
	Map Transformers
	Serializing and Deserializing Transformers
	JSON Transformers
	XML Transformers
	XPath Transformers

	Custom Transformers
	Trade Map Transformer
	String Transformer

	Using Annotations
	Summary

	Chapter 6. Flow Components
	Introduction
	Filters
	Using Custom Filters
	Using Framework’s MessageSelector
	Using Annotations
	Discarded Messages

	Routers
	PayloadTypeRouter
	HeaderValueRouter
	Custom Routers
	Recipient List Router
	Unqualified Messages
	Routers Using Annotations

	Splitters
	Using Custom Splitters
	Using AbstractMessageSplitter
	Using Annotations
	Splitter in the Background

	Aggregators
	Strategies
	Correlation Strategy
	Release Strategy
	Message Store

	Resequencers
	Summary

	Chapter 7. Adapters
	Introduction
	File Adapters
	Using Namespace
	Inbound File Adapter
	File Adapter Settings
	Preventing Duplicate Files
	Filters
	File Locks

	Standalone File Readers
	Outbound Adapters
	Standalone File Adapters

	FTP Adapters
	Session Factory
	Inbound FTP Adapters
	Outbound FTP Adapters
	Caching Sessions

	JMS Adapters
	Inbound Adapters: Receiving Messages
	Synchronous Consumers
	Message-Driven Consumers
	Payload Conversions

	Publishing Messages: Outbound Adapters

	JDBC Adapters
	Inbound JDBC Adapters
	Outbound JDBC Adapters

	Summary

